
Chapter Two

Vector Spaces

The first chapter finished with a fair understanding of how Gauss’s Method
solves a linear system. It systematically takes linear combinations of the rows.
Here we move to a general study of linear combinations.

We need a setting. At times in the first chapter we’ve combined vectors from
R2, at other times vectors from R3, and at other times vectors from higher-
dimensional spaces. So our first impulse might be to work in Rn, leaving n
unspecified. This would have the advantage that any of the results would hold
for R2 and for R3 and for many other spaces, simultaneously.

But if having the results apply to many spaces at once is advantageous then
sticking only to Rn’s is overly restrictive. We’d like our results to apply to
combinations of row vectors, as in the final section of the first chapter. We’ve
even seen some spaces that are not simply a collection of all of the same-sized
column vectors or row vectors. For instance, we’ve seen a homogeneous system’s
solution set that is a plane inside of R3. This set is a closed system in that a
linear combination of these solutions is also a solution. But it does not contain
all of the three-tall column vectors, only some of them.

We want the results about linear combinations to apply anywhere that linear
combinations make sense. We shall call any such set a vector space. Our results,
instead of being phrased as “Whenever we have a collection in which we can
sensibly take linear combinations . . . ”, will be stated “In any vector space . . . ”

Such a statement describes at once what happens in many spaces. To
understand the advantages of moving from studying a single space to studying
a class of spaces, consider this analogy. Imagine that the government made
laws one person at a time: “Leslie Jones can’t jay walk.” That would be bad;
statements have the virtue of economy when they apply to many cases at once.
Or suppose that they said, “Kim Ke must stop when passing an accident.”
Contrast that with, “Any doctor must stop when passing an accident.” More
general statements, in some ways, are clearer.
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I Definition of Vector Space

We shall study structures with two operations, an addition and a scalar multi-
plication, that are subject to some simple conditions. We will reflect more on
the conditions later but on first reading notice how reasonable they are. For
instance, surely any operation that can be called an addition (e.g., column vector
addition, row vector addition, or real number addition) will satisfy conditions
(1) through (5) below.

I.1 Definition and Examples

1.1 Definition A vector space (over R) consists of a set V along with two
operations ‘+’ and ‘·’ subject to the conditions that for all vectors ~v, ~w, ~u ∈ V
and all scalars r, s ∈ R:
(1) the set V is closed under vector addition, that is, ~v+ ~w ∈ V
(2) vector addition is commutative, ~v+ ~w = ~w+~v

(3) vector addition is associative, (~v+ ~w) + ~u = ~v+ (~w+ ~u)

(4) there is a zero vector ~0 ∈ V such that ~v+~0 = ~v for all ~v ∈ V
(5) each ~v ∈ V has an additive inverse ~w ∈ V such that ~w+~v = ~0

(6) the set V is closed under scalar multiplication, that is, r ·~v ∈ V
(7) addition of scalars distributes over scalar multiplication, (r+s)·~v = r·~v+s·~v
(8) scalar multiplication distributes over vector addition, r·(~v+ ~w) = r·~v+r· ~w
(9) ordinary multipication of scalars associates with scalar multiplication,

(rs) ·~v = r · (s ·~v)
(10) multiplication by the scalar 1 is the identity operation, 1 ·~v = ~v.

1.2 Remark The definition involves two kinds of addition and two kinds of
multiplication, and so may at first seem confused. For instance, in condition (7)
the ‘+’ on the left is addition of two real numbers while the ‘+’ on the right
is addition of two vectors in V. These expressions aren’t ambiguous because
of context; for example, r and s are real numbers so ‘r + s’ can only mean
real number addition. In the same way, item (9)’s left side ‘rs’ is ordinary
real number multiplication, while its right side ‘s ·~v’ is the scalar multipliction
defined for this vector space.

The best way to understand the definition is to go through the examples below
and for each, check all ten conditions. The first example includes that check,
written out at length. Use it as a model for the others. Especially important are
the closure conditions, (1) and (6). They specify that the addition and scalar
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multiplication operations are always sensible— they are defined for every pair of
vectors and every scalar and vector, and the result of the operation is a member
of the set (see Example 1.4).

1.3 Example The set R2 is a vector space if the operations ‘+’ and ‘·’ have their
usual meaning.(

x1
x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
r ·

(
x1
x2

)
=

(
rx1
rx2

)

We shall check all of the conditions.
There are five conditions in the paragraph having to do with addition. For

(1), closure of addition, observe that for any v1, v2, w1, w2 ∈ R the result of the
vector sum (

v1
v2

)
+

(
w1
w2

)
=

(
v1 +w1
v2 +w2

)
is a column array with two real entries, and so is in R2. For (2), that addition
of vectors commutes, take all entries to be real numbers and compute(

v1
v2

)
+

(
w1
w2

)
=

(
v1 +w1
v2 +w2

)
=

(
w1 + v1
w2 + v2

)
=

(
w1
w2

)
+

(
v1
v2

)

(the second equality follows from the fact that the components of the vectors are
real numbers, and the addition of real numbers is commutative). Condition (3),
associativity of vector addition, is similar.

(

(
v1
v2

)
+

(
w1
w2

)
) +

(
u1
u2

)
=

(
(v1 +w1) + u1
(v2 +w2) + u2

)

=

(
v1 + (w1 + u1)

v2 + (w2 + u2)

)

=

(
v1
v2

)
+ (

(
w1
w2

)
+

(
u1
u2

)
)

For the fourth condition we must produce a zero element— the vector of zeroes
is it. (

v1
v2

)
+

(
0

0

)
=

(
v1
v2

)
For (5), to produce an additive inverse, note that for any v1, v2 ∈ R we have(

−v1
−v2

)
+

(
v1
v2

)
=

(
0

0

)
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so the first vector is the desired additive inverse of the second.
The checks for the five conditions having to do with scalar multiplication are

similar. For (6), closure under scalar multiplication, where r, v1, v2 ∈ R,

r ·

(
v1
v2

)
=

(
rv1
rv2

)

is a column array with two real entries, and so is in R2. Next, this checks (7).

(r+ s) ·

(
v1
v2

)
=

(
(r+ s)v1
(r+ s)v2

)
=

(
rv1 + sv1
rv2 + sv2

)
= r ·

(
v1
v2

)
+ s ·

(
v1
v2

)

For (8), that scalar multiplication distributes from the left over vector addition,
we have this.

r · (

(
v1
v2

)
+

(
w1
w2

)
) =

(
r(v1 +w1)

r(v2 +w2)

)
=

(
rv1 + rw1
rv2 + rw2

)
= r ·

(
v1
v2

)
+ r ·

(
w1
w2

)
The ninth

(rs) ·

(
v1
v2

)
=

(
(rs)v1
(rs)v2

)
=

(
r(sv1)

r(sv2)

)
= r · (s ·

(
v1
v2

)
)

and tenth conditions are also straightforward.

1 ·

(
v1
v2

)
=

(
1v1
1v2

)
=

(
v1
v2

)
In a similar way, each Rn is a vector space with the usual operations of vector

addition and scalar multiplication. (In R1, we usually do not write the members
as column vectors, i.e., we usually do not write ‘(π)’. Instead we just write ‘π’.)

1.4 Example This subset of R3 that is a plane through the origin

P = {

xy
z

 | x+ y+ z = 0 }

is a vector space if ‘+’ and ‘·’ are interpreted in this way.x1y1
z1

+

x2y2
z2

 =

x1 + x2y1 + y2
z1 + z2

 r ·

xy
z

 =

rxry
rz


The addition and scalar multiplication operations here are just the ones of R3,
reused on its subset P. We say that P inherits these operations from R3. This
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example of an addition in P 1

1

−2

+

−1

0

1

 =

 0

1

−1


illustrates that P is closed under addition. We’ve added two vectors from P—
that is, with the property that the sum of their three entries is zero—and the
result is a vector also in P. Of course, this example is not a proof. For the proof
that P is closed under addition, take two elements of P.x1y1

z1


x2y2
z2


Membership in P means that x1 + y1 + z1 = 0 and x2 + y2 + z2 = 0. Observe
that their sum x1 + x2y1 + y2

z1 + z2


is also in P since its entries add (x1 + x2) + (y1 + y2) + (z1 + z2) = (x1 + y1 +

z1) + (x2 + y2 + z2) to 0. To show that P is closed under scalar multiplication,
start with a vector from P xy

z


where x+ y+ z = 0, and then for r ∈ R observe that the scalar multiple

r ·

xy
z

 =

rxry
rz


gives rx + ry + rz = r(x + y + z) = 0. Thus the two closure conditions are
satisfied. Verification of the other conditions in the definition of a vector space
are just as straightforward.

1.5 Example Example 1.3 shows that the set of all two-tall vectors with real
entries is a vector space. Example 1.4 gives a subset of an Rn that is also a
vector space. In contrast with those two, consider the set of two-tall columns
with entries that are integers (under the usual operations of component-wise
addition and scalar multiplication). This is a subset of a vector space but it is
not itself a vector space. The reason is that this set is not closed under scalar
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multiplication, that is, it does not satisfy condition (6). Here is a column with
integer entries and a scalar such that the outcome of the operation

0.5 ·

(
4

3

)
=

(
2

1.5

)

is not a member of the set, since its entries are not all integers.

1.6 Example The singleton set

{


0

0

0

0

}

is a vector space under the operations
0

0

0

0

+


0

0

0

0

 =


0

0

0

0

 r ·


0

0

0

0

 =


0

0

0

0


that it inherits from R4.

A vector space must have at least one element, its zero vector. Thus a
one-element vector space is the smallest possible.

1.7 Definition A one-element vector space is a trivial space.

The examples so far involve sets of column vectors with the usual operations.
But vector spaces need not be collections of column vectors, or even of row
vectors. Below are some other types of vector spaces. The term ‘vector space’
does not mean ‘collection of columns of reals’. It means something more like
‘collection in which any linear combination is sensible’.

1.8 Example Consider P3 = {a0 + a1x+ a2x
2 + a3x

3 | a0, . . . , a3 ∈ R }, the set
of polynomials of degree three or less (in this book, we’ll take constant polyno-
mials, including the zero polynomial, to be of degree zero). It is a vector space
under the operations

(a0 + a1x+ a2x
2 + a3x

3) + (b0 + b1x+ b2x
2 + b3x

3)

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + (a3 + b3)x

3

and

r · (a0 + a1x+ a2x2 + a3x3) = (ra0) + (ra1)x+ (ra2)x
2 + (ra3)x

3
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(the verification is easy). This vector space is worthy of attention because these
are the polynomial operations familiar from high school algebra. For instance,
3 · (1− 2x+ 3x2 − 4x3) − 2 · (2− 3x+ x2 − (1/2)x3) = −1+ 7x2 − 11x3.

Although this space is not a subset of any Rn, there is a sense in which we
can think of P3 as “the same” as R4. If we identify these two space’s elements in
this way

a0 + a1x+ a2x
2 + a3x

3 corresponds to


a0
a1
a2
a3


then the operations also correspond. Here is an example of corresponding
additions.

1− 2x+ 0x2 + 1x3

+ 2+ 3x+ 7x2 − 4x3

3+ 1x+ 7x2 − 3x3
corresponds to


1

−2

0

1

+


2

3

7

−4

 =


3

1

7

−3


Things we are thinking of as “the same” add to “the same” sum. Chapter Three
makes precise this idea of vector space correspondence. For now we shall just
leave it as an intuition.

1.9 Example The set M2×2 of 2×2 matrices with real number entries is a vector
space under the natural entry-by-entry operations.(

a b

c d

)
+

(
w x

y z

)
=

(
a+w b+ x

c+ y d+ z

)
r ·

(
a b

c d

)
=

(
ra rb

rc rd

)
As in the prior example, we can think of this space as “the same” as R4.
1.10 Example The set {f | f : N→ R } of all real-valued functions of one natural
number variable is a vector space under the operations

(f1 + f2) (n) = f1(n) + f2(n) (r · f) (n) = r f(n)

so that if, for example, f1(n) = n2 + 2 sin(n) and f2(n) = − sin(n) + 0.5 then
(f1 + 2f2) (n) = n

2 + 1.
We can view this space as a generalization of Example 1.3— instead of 2-tall

vectors, these functions are like infinitely-tall vectors.

n f(n) = n2 + 1

0 1

1 2

2 5

3 10
...

...

corresponds to


1

2

5

10
...


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Addition and scalar multiplication are component-wise, as in Example 1.3. (We
can formalize “infinitely-tall” by saying that it means an infinite sequence, or
that it means a function from N to R.)
1.11 Example The set of polynomials with real coefficients

{a0 + a1x+ · · ·+ anxn | n ∈ N and a0, . . . , an ∈ R }

makes a vector space when given the natural ‘+’

(a0 + a1x+ · · ·+ anxn) + (b0 + b1x+ · · ·+ bnxn)
= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x

n

and ‘·’.

r · (a0 + a1x+ . . . anxn) = (ra0) + (ra1)x+ . . . (ran)x
n

This space differs from the space P3 of Example 1.8. This space contains
not just degree three polynomials, but degree thirty polynomials and degree
three hundred polynomials, too. Each individual polynomial of course is of a
finite degree, but the set has no single bound on the degree of all of its members.

We can think of this example, like the prior one, in terms of infinite-tuples.
For instance, we can think of 1+ 3x+ 5x2 as corresponding to (1, 3, 5, 0, 0, . . .).
However, this space differs from the one in Example 1.10. Here, each member of
the set has a finite degree, that is, under the correspondence there is no element
from this space matching (1, 2, 5, 10, . . . ). Vectors in this space correspond to
infinite-tuples that end in zeroes.

1.12 Example The set {f | f : R→ R } of all real-valued functions of one real
variable is a vector space under these.

(f1 + f2) (x) = f1(x) + f2(x) (r · f) (x) = r f(x)

The difference between this and Example 1.10 is the domain of the functions.

1.13 Example The set F = {a cos θ+ b sin θ | a, b ∈ R} of real-valued functions of
the real variable θ is a vector space under the operations

(a1 cos θ+ b1 sin θ) + (a2 cos θ+ b2 sin θ) = (a1 + a2) cos θ+ (b1 + b2) sin θ

and
r · (a cos θ+ b sin θ) = (ra) cos θ+ (rb) sin θ

inherited from the space in the prior example. (We can think of F as “the same”
as R2 in that a cos θ+ b sin θ corresponds to the vector with components a and
b.)
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1.14 Example The set

{f : R→ R |
d2f

dx2
+ f = 0 }

is a vector space under the, by now natural, interpretation.

(f+ g) (x) = f(x) + g(x) (r · f) (x) = r f(x)

In particular, notice that closure is a consequence

d2(f+ g)

dx2
+ (f+ g) = (

d2f

dx2
+ f) + (

d2g

dx2
+ g)

and
d2(rf)

dx2
+ (rf) = r(

d2f

dx2
+ f)

of basic Calculus. This turns out to equal the space from the prior example—
functions satisfying this differential equation have the form a cos θ+ b sin θ—
but this description suggests an extension to solutions sets of other differential
equations.

1.15 Example The set of solutions of a homogeneous linear system in n variables is
a vector space under the operations inherited from Rn. For example, for closure
under addition consider a typical equation in that system c1x1 + · · ·+ cnxn = 0

and suppose that both these vectors

~v =

v1...
vn

 ~w =

w1...
wn


satisfy the equation. Then their sum ~v+ ~w also satisfies that equation: c1(v1 +
w1) + · · ·+ cn(vn+wn) = (c1v1+ · · ·+ cnvn) + (c1w1+ · · ·+ cnwn) = 0. The
checks of the other vector space conditions are just as routine.

We often omit the multiplication symbol ‘·’ between the scalar and the vector.
We distinguish the multiplication in c1v1 from that in r~v by context, since if
both multiplicands are real numbers then it must be real-real multiplication
while if one is a vector then it must be scalar-vector multiplication.

Example 1.15 has brought us full circle since it is one of our motivating
examples. Now, with some feel for the kinds of structures that satisfy the
definition of a vector space, we can reflect on that definition. For example, why
specify in the definition the condition that 1 · ~v = ~v but not a condition that
0 ·~v = ~0?

One answer is that this is just a definition— it gives the rules and you need
to follow those rules to continue.
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Another answer is perhaps more satisfying. People in this area have worked
to develop the right balance of power and generality. This definition is shaped
so that it contains the conditions needed to prove all of the interesting and
important properties of spaces of linear combinations. As we proceed, we shall
derive all of the properties natural to collections of linear combinations from the
conditions given in the definition.

The next result is an example. We do not need to include these properties
in the definition of vector space because they follow from the properties already
listed there.

1.16 Lemma In any vector space V , for any ~v ∈ V and r ∈ R, we have (1) 0 ·~v = ~0,
(2) (−1 ·~v) +~v = ~0, and (3) r ·~0 = ~0.

Proof For (1) note that ~v = (1 + 0) · ~v = ~v + (0 · ~v). Add to both sides the
additive inverse of ~v, the vector ~w such that ~w+~v = ~0.

~w+~v = ~w+~v+ 0 ·~v
~0 = ~0+ 0 ·~v
~0 = 0 ·~v

Item (2) is easy: (−1 ·~v)+~v = (−1+ 1) ·~v = 0 ·~v = ~0. For (3), r ·~0 = r · (0 ·~0) =
(r · 0) ·~0 = ~0 will do. QED

The second item shows that we can write the additive inverse of ~v as ‘−~v ’
without worrying about any confusion with (−1) ·~v.

A recap: our study in Chapter One of Gaussian reduction led us to consider
collections of linear combinations. So in this chapter we have defined a vector
space to be a structure in which we can form such combinations, subject to
simple conditions on the addition and scalar multiplication operations. In a
phrase: vector spaces are the right context in which to study linearity.

From the fact that it forms a whole chapter, and especially because that
chapter is the first one, a reader could suppose that our purpose in this book is
the study of linear systems. The truth is that we will not so much use vector
spaces in the study of linear systems as we instead have linear systems start us
on the study of vector spaces. The wide variety of examples from this subsection
shows that the study of vector spaces is interesting and important in its own
right. Linear systems won’t go away. But from now on our primary objects of
study will be vector spaces.

Exercises
1.17 Name the zero vector for each of these vector spaces.

(a) The space of degree three polynomials under the natural operations.
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(b) The space of 2×4 matrices.
(c) The space {f : [0..1]→ R | f is continuous }.
(d) The space of real-valued functions of one natural number variable.

X 1.18 Find the additive inverse, in the vector space, of the vector.
(a) In P3, the vector −3− 2x+ x2.
(b) In the space 2×2, (

1 −1

0 3

)
.

(c) In {aex + be−x | a, b ∈ R }, the space of functions of the real variable x under
the natural operations, the vector 3ex − 2e−x.

X 1.19 For each, list three elements and then show it is a vector space.
(a) The set of linear polynomials P1 = {a0 + a1x | a0, a1 ∈ R } under the usual
polynomial addition and scalar multiplication operations.
(b) The set of linear polynomials {a0 + a1x | a0 − 2a1 = 0 }, under the usual poly-
nomial addition and scalar multiplication operations.

Hint. Use Example 1.3 as a guide. Most of the ten conditions are just verifications.
1.20 For each, list three elements and then show it is a vector space.

(a) The set of 2×2 matrices with real entries under the usual matrix operations.
(b) The set of 2×2 matrices with real entries where the 2, 1 entry is zero, under
the usual matrix operations.

X 1.21 For each, list three elements and then show it is a vector space.
(a) The set of three-component row vectors with their usual operations.
(b) The set

{


x

y

z

w

 ∈ R4 | x+ y− z+w = 0 }

under the operations inherited from R4.
X 1.22 Show that each of these is not a vector space. (Hint. Check closure by listing

two members of each set and trying some operations on them.)
(a) Under the operations inherited from R3, this set

{

xy
z

 ∈ R3 | x+ y+ z = 1 }

(b) Under the operations inherited from R3, this set

{

xy
z

 ∈ R3 | x2 + y2 + z2 = 1 }

(c) Under the usual matrix operations,

{

(
a 1

b c

)
| a, b, c ∈ R }

(d) Under the usual polynomial operations,
{a0 + a1x+ a2x

2 | a0, a1, a2 ∈ R+ }

where R+ is the set of reals greater than zero
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(e) Under the inherited operations,

{

(
x

y

)
∈ R2 | x+ 3y = 4 and 2x− y = 3 and 6x+ 4y = 10 }

1.23 Define addition and scalar multiplication operations to make the complex
numbers a vector space over R.

X 1.24 Is the set of rational numbers a vector space over R under the usual addition
and scalar multiplication operations?

1.25 Show that the set of linear combinations of the variables x, y, z is a vector space
under the natural addition and scalar multiplication operations.

1.26 Prove that this is not a vector space: the set of two-tall column vectors with
real entries subject to these operations.(

x1
y1

)
+

(
x2
y2

)
=

(
x1 − x2
y1 − y2

)
r ·
(
x

y

)
=

(
rx

ry

)
1.27 Prove or disprove that R3 is a vector space under these operations.

(a)

x1y1
z1

+

x2y2
z2

 =

00
0

 and r

xy
z

 =

rxry
rz


(b)

x1y1
z1

+

x2y2
z2

 =

00
0

 and r

xy
z

 =

00
0


X 1.28 For each, decide if it is a vector space; the intended operations are the natural

ones.
(a) The diagonal 2×2 matrices

{

(
a 0

0 b

)
| a, b ∈ R }

(b) This set of 2×2 matrices

{

(
x x+ y

x+ y y

)
| x, y ∈ R }

(c) This set

{


x

y

z

w

 ∈ R4 | x+ y+w = 1 }

(d) The set of functions {f : R→ R | df/dx+ 2f = 0 }

(e) The set of functions {f : R→ R | df/dx+ 2f = 1 }

X 1.29 Prove or disprove that this is a vector space: the real-valued functions f of one
real variable such that f(7) = 0.

X 1.30 Show that the set R+ of positive reals is a vector space when we interpret ‘x+y’
to mean the product of x and y (so that 2+ 3 is 6), and we interpret ‘r · x’ as the
r-th power of x.

1.31 Is {(x, y) | x, y ∈ R } a vector space under these operations?
(a) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and r · (x, y) = (rx, y)

(b) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and r · (x, y) = (rx, 0)
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1.32 Prove or disprove that this is a vector space: the set of polynomials of degree
greater than or equal to two, along with the zero polynomial.

1.33 At this point “the same” is only an intuition, but nonetheless for each vector
space identify the k for which the space is “the same” as Rk.
(a) The 2×3 matrices under the usual operations
(b) The n×m matrices (under their usual operations)
(c) This set of 2×2 matrices

{

(
a 0

b c

)
| a, b, c ∈ R }

(d) This set of 2×2 matrices

{

(
a 0

b c

)
| a+ b+ c = 0 }

X 1.34 Using ~+ to represent vector addition and ~· for scalar multiplication, restate
the definition of vector space.

X 1.35 Prove these.
(a) Any vector is the additive inverse of the additive inverse of itself.
(b) Vector addition left-cancels: if ~v,~s,~t ∈ V then ~v+~s = ~v+~t implies that ~s = ~t.

1.36 The definition of vector spaces does not explicitly say that ~0+~v = ~v (it instead
says that ~v+~0 = ~v). Show that it must nonetheless hold in any vector space.

X 1.37 Prove or disprove that this is a vector space: the set of all matrices, under the
usual operations.

1.38 In a vector space every element has an additive inverse. Can some elements
have two or more?

1.39 (a) Prove that every point, line, or plane thru the origin in R3 is a vector
space under the inherited operations.
(b) What if it doesn’t contain the origin?

X 1.40 Using the idea of a vector space we can easily reprove that the solution set of
a homogeneous linear system has either one element or infinitely many elements.
Assume that ~v ∈ V is not ~0.
(a) Prove that r ·~v = ~0 if and only if r = 0.
(b) Prove that r1 ·~v = r2 ·~v if and only if r1 = r2.
(c) Prove that any nontrivial vector space is infinite.
(d) Use the fact that a nonempty solution set of a homogeneous linear system is
a vector space to draw the conclusion.

1.41 Is this a vector space under the natural operations: the real-valued functions of
one real variable that are differentiable?

1.42 A vector space over the complex numbers C has the same definition as a vector
space over the reals except that scalars are drawn from C instead of from R. Show
that each of these is a vector space over the complex numbers. (Recall how complex
numbers add and multiply: (a0 + a1i) + (b0 + b1i) = (a0 + b0) + (a1 + b1)i and
(a0 + a1i)(b0 + b1i) = (a0b0 − a1b1) + (a0b1 + a1b0)i.)
(a) The set of degree two polynomials with complex coefficients
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(b) This set

{

(
0 a

b 0

)
| a, b ∈ C and a+ b = 0+ 0i }

1.43 Name a property shared by all of the Rn’s but not listed as a requirement for a
vector space.

X 1.44 (a) Prove that for any four vectors ~v1, . . . ,~v4 ∈ V we can associate their sum
in any way without changing the result.

((~v1 +~v2) +~v3) +~v4 = (~v1 + (~v2 +~v3)) +~v4 = (~v1 +~v2) + (~v3 +~v4)

= ~v1 + ((~v2 +~v3) +~v4) = ~v1 + (~v2 + (~v3 +~v4))

This allows us to write ‘~v1 +~v2 +~v3 +~v4’ without ambiguity.
(b) Prove that any two ways of associating a sum of any number of vectors give
the same sum. (Hint. Use induction on the number of vectors.)

1.45 Example 1.5 gives a subset of R2 that is not a vector space, under the obvious
operations, because while it is closed under addition, it is not closed under scalar
multiplication. Consider the set of vectors in the plane whose components have
the same sign or are 0. Show that this set is closed under scalar multiplication but
not addition.

1.46 For any vector space, a subset that is itself a vector space under the inherited
operations (e.g., a plane through the origin inside of R3) is a subspace.
(a) Show that {a0 + a1x+ a2x

2 | a0 + a1 + a2 = 0 } is a subspace of the vector
space of degree two polynomials.
(b) Show that this is a subspace of the 2×2 matrices.

{

(
a b

c 0

)
| a+ b = 0 }

(c) Show that a nonempty subset S of a real vector space is a subspace if and only
if it is closed under linear combinations of pairs of vectors: whenever c1, c2 ∈ R
and ~s1,~s2 ∈ S then the combination c1~v1 + c2~v2 is in S.

I.2 Subspaces and Spanning Sets

One of the examples that led us to define vector spaces was the solution set of a
homogeneous system. For instance, we saw in Example 1.4 such a space that
is a planar subset of R3. There, the vector space R3 contains inside it another
vector space, the plane.

2.1 Definition For any vector space, a subspace is a subset that is itself a vector
space, under the inherited operations.
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2.2 Example Example 1.4’s plane

P = {

xy
z

 | x+ y+ z = 0 }

is a subspace of R3. As required by the definition the plane’s operations are
inherited from the larger space, that is, vectors add in P as they add in R3x1y1

z1

+

x2y2
z2

 =

x1 + x2y1 + y2
z1 + z2


and scalar multiplication is also the same as in R3. To show that P is a subspace
we need only note that it is a subset and then verify that it is a space. We have
already checked in Example 1.4 that P satisfies the conditions in the definition
of a vector space. For instance, for closure under addition we noted that if the
summands satisfy that x1 + y1 + z1 = 0 and x2 + y2 + z2 = 0 then the sum
satisfies that (x1+x2)+(y1+y2)+(z1+z2) = (x1+y1+z1)+(x2+y2+z2) = 0.

2.3 Example The x-axis in R2 is a subspace, where the addition and scalar
multiplication operations are the inherited ones.(

x1
0

)
+

(
x2
0

)
=

(
x1 + x2
0

)
r ·

(
x

0

)
=

(
rx

0

)
As in the prior example, to verify directly from the definition that this is a
subspace we simply that it is a subset and then check that it satisfies the
conditions in definition of a vector space. For instance the two closure conditions
are satisfied: adding two vectors with a second component of zero results in a
vector with a second component of zero and multiplying a scalar times a vector
with a second component of zero results in a vector with a second component of
zero.

2.4 Example Another subspace of R2 is its trivial subspace.

{

(
0

0

)
}

Any vector space has a trivial subspace {~0 }. At the opposite extreme, any
vector space has itself for a subspace. These two are the improper subspaces.
Other subspaces are proper .

2.5 Example Vector spaces that are not Rn’s also have subspaces. The space of
cubic polynomials {a+ bx+ cx2 + dx3 | a, b, c, d ∈ R } has a subspace comprised
of all linear polynomials {m+ nx | m,n ∈ R }.
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2.6 Example Another example of a subspace that is not a subset of an Rn followed
the definition of a vector space. The space in Example 1.12 of all real-valued
functions of one real variable {f | f : R→ R } has the subspace in Example 1.14
of functions satisfying the restriction (d2 f/dx2) + f = 0.

2.7 Example The definition requires that the addition and scalar multiplication
operations must be the ones inherited from the larger space. The set S = {1 } is
a subset of R1. And, under the operations 1 + 1 = 1 and r · 1 = 1 the set S is
a vector space, specifically, a trivial space. However, S is not a subspace of R1

because those aren’t the inherited operations, since of course R1 has 1+ 1 = 2.

2.8 Example Being vector spaces themselves, subspaces must satisfy the closure
conditions. The set R+ is not a subspace of the vector space R1 because with
the inherited operations it is not closed under scalar multiplication: if ~v = 1

then −1 ·~v 6∈ R+.

The next result says that Example 2.8 is prototypical. The only way that
a subset can fail to be a subspace, if it is nonempty and uses the inherited
operations, is if it isn’t closed.

2.9 Lemma For a nonempty subset S of a vector space, under the inherited
operations the following are equivalent statements.∗

(1) S is a subspace of that vector space
(2) S is closed under linear combinations of pairs of vectors: for any vectors
~s1,~s2 ∈ S and scalars r1, r2 the vector r1~s1 + r2~s2 is in S
(3) S is closed under linear combinations of any number of vectors: for any
vectors ~s1, . . . ,~sn ∈ S and scalars r1, . . . , rn the vector r1~s1 + · · ·+ rn~sn is
an element of S.

Briefly, a subset is a subspace if and only if it is closed under linear combinations.

Proof ‘The following are equivalent’ means that each pair of statements are
equivalent.

(1) ⇐⇒ (2) (2) ⇐⇒ (3) (3) ⇐⇒ (1)

We will prove the equivalence by establishing that (1) =⇒ (3) =⇒ (2) =⇒ (1).
This strategy is suggested by the observation that the implications (1) =⇒ (3)

and (3) =⇒ (2) are easy and so we need only argue that (2) =⇒ (1).
Assume that S is a nonempty subset of a vector space V that is S closed

under combinations of pairs of vectors. We will show that S is a vector space by
checking the conditions.

The vector space definition has five conditions on addition. First, for closure
under addition, if ~s1,~s2 ∈ S then ~s1 + ~s2 ∈ S, as it is a combination of a pair
∗More information on equivalence of statements is in the appendix.
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of vectors and we are assuming that S is closed under those. Second, for any
~s1,~s2 ∈ S, because addition is inherited from V , the sum ~s1 +~s2 in S equals the
sum ~s1 + ~s2 in V, and that equals the sum ~s2 + ~s1 in V (because V is a vector
space, its addition is commutative), and that in turn equals the sum ~s2 + ~s1 in
S. The argument for the third condition is similar to that for the second. For
the fourth, consider the zero vector of V and note that closure of S under linear
combinations of pairs of vectors gives that 0 · ~s + 0 · ~s = ~0 is an element of S
(where ~s is any member of the nonempty set S); checking that ~0 acts under the
inherited operations as the additive identity of S is easy. The fifth condition
is satisfied because for any ~s ∈ S, closure under linear combinations of pairs of
vectors shows that 0 · ~0 + (−1) · ~s is an element of S, and it is obviously the
additive inverse of ~s under the inherited operations.

The verifications for the scalar multiplication conditions are similar; see
Exercise 33. QED

We will usually verify that a subset is a subspace by checking that it satisfies
statement (2).

2.10 Remark At the start of this chapter we introduced vector spaces as collections
in which linear combinations “make sense.” Theorem 2.9’s statements (1)-(3)
say that we can always make sense of an expression like r1~s1 + r2~s2 in that the
vector described is in the set S.

As a contrast, consider the set T of two-tall vectors whose entries add to
a number greater than or equal to zero. Here we cannot just write any linear
combination such as 2~t1 − 3~t2 and be confident the result is an element of T .

Lemma 2.9 suggests that a good way to think of a vector space is as a
collection of unrestricted linear combinations. The next two examples take some
spaces and recasts their descriptions to be in that form.

2.11 Example We can show that this plane through the origin subset of R3

S = {

xy
z

 | x− 2y+ z = 0 }

is a subspace under the usual addition and scalar multiplication operations
of column vectors by checking that it is nonempty and closed under linear
combinations of two vectors. But there is another way. Think of x− 2y+ z = 0

as a one-equation linear system and parametrize it by expressing the leading
variable in terms of the free variables x = 2y− z.

S = {

2y− z

y

z

 | y, z ∈ R } = {y

21
0

+ z

−1

0

1

 | y, z ∈ R } (∗)
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Now, to show that this is a subspace consider r1~s1 + r2~s2. Each ~si is a linear
combination of the two vectors in (∗) so this is a linear combination of linear
combinations.

r1 · (y1

21
0

+ z1

−1

0

1

) + r2 · (y2

21
0

+ z2

−1

0

1

)

The Linear Combination Lemma, Lemma One.III.2.3, shows that the total is
a linear combination of the two vectors and so Theorem 2.9’s statement (2) is
satisfied.

2.12 Example This is a subspace of the 2×2 matrices M2×2.

L = {

(
a 0

b c

)
| a+ b+ c = 0 }

To parametrize, express the condition as a = −b− c.

L = {

(
−b− c 0

b c

)
| b, c ∈ R } = {b

(
−1 0

1 0

)
+ c

(
−1 0

0 1

)
| b, c ∈ R }

As above, we’ve described the subspace as a collection of unrestricted linear
combinations. To show it is a subspace, note that a linear combination of vectors
from L is a linear combination of linear combinations and so statement (2) is
true.

2.13 Definition The span (or linear closure) of a nonempty subset S of a vector
space is the set of all linear combinations of vectors from S.

[S] = {c1~s1 + · · ·+ cn~sn | c1, . . . , cn ∈ R and ~s1, . . . ,~sn ∈ S}

The span of the empty subset of a vector space is its trivial subspace.

No notation for the span is completely standard. The square brackets used here
are common but so are ‘span(S)’ and ‘sp(S)’.

2.14 Remark In Chapter One, after we showed that we can write the solution
set of a homogeneous linear system as {c1~β1 + · · ·+ ck~βk | c1, . . . , ck ∈ R }, we
described that as the set ‘generated’ by the ~β’s. We now call that the span of
{~β1, . . . , ~βk }.

Recall also from that proof that the span of the empty set is defined to
be the set {~0 } because of the convention that a trivial linear combination, a
combination of zero-many vectors, adds to ~0. Besides, defining the empty set’s
span to be the trivial subspace is convenient because it keeps results like the
next one from needing exceptions for the empty set.
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2.15 Lemma In a vector space, the span of any subset is a subspace.

Proof If the subset S is empty then by definition its span is the trivial subspace.
If S is not empty then by Lemma 2.9 we need only check that the span [S] is
closed under linear combinations of pairs of elements. For a pair of vectors from
that span, ~v = c1~s1 + · · · + cn~sn and ~w = cn+1~sn+1 + · · · + cm~sm, a linear
combination

p · (c1~s1 + · · ·+ cn~sn) + r · (cn+1~sn+1 + · · ·+ cm~sm)

= pc1~s1 + · · ·+ pcn~sn + rcn+1~sn+1 + · · ·+ rcm~sm

is a linear combination of elements of S and so is an element of [S] (possibly
some of the ~si’s from ~v equal some of the ~sj’s from ~w but that does not matter).
QED

The converse of the lemma holds: any subspace is the span of some set,
because a subspace is obviously the span of itself, the set of all of its members.
Thus a subset of a vector space is a subspace if and only if it is a span. This
fits the intuition that a good way to think of a vector space is as a collection in
which linear combinations are sensible.

Taken together, Lemma 2.9 and Lemma 2.15 show that the span of a subset
S of a vector space is the smallest subspace containing all of the members of S.

2.16 Example In any vector space V, for any vector ~v ∈ V, the set {r ·~v | r ∈ R }

is a subspace of V. For instance, for any vector ~v ∈ R3 the line through the
origin containing that vector {k~v | k ∈ R } is a subspace of R3. This is true even
if ~v is the zero vector, in which case it is the degenerate line, the trivial subspace.

2.17 Example The span of this set is all of R2.

{

(
1

1

)
,

(
1

−1

)
}

We know that the span is some subspace of R2. To check that it is all of R2 we
must show that any member of R2 is a linear combination of these two vectors.
So we ask: for which vectors with real components x and y are there scalars c1
and c2 such that this holds?

c1

(
1

1

)
+ c2

(
1

−1

)
=

(
x

y

)
(∗)

Gauss’s Method

c1 + c2 = x

c1 − c2 = y

−ρ1+ρ2−→ c1 + c2 = x

−2c2 =−x+ y
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with back substitution gives c2 = (x − y)/2 and c1 = (x + y)/2. This shows
that for any x, y there are appropriate coefficients c1, c2 making (∗) true—we
can write any element of R2 as a linear combination of the two given ones. For
instance, for x = 1 and y = 2 the coefficients c2 = −1/2 and c1 = 3/2 will do.

Since spans are subspaces, and we know that a good way to understand a
subspace is to parametrize its description, we can try to understand a set’s span
in that way.

2.18 Example Consider, in the vector space of quadratic polynomials P2, the
span of the set S = {3x− x2, 2x }. By the definition of span, it is the set of
unrestricted linear combinations of the two {c1(3x− x

2) + c2(2x) | c1, c2 ∈ R }.
Clearly polynomials in this span must have a constant term of zero. Is that
necessary condition also sufficient?

We are asking: for which members a2x2 + a1x+ a0 of P2 are there c1 and
c2 such that a2x2 + a1x+ a0 = c1(3x− x2) + c2(2x)? Polynomials are equal if
and only if their coefficients are equal so we are looking for conditions on a2,
a1, and a0 necessary for that triple to be a solution of this system.

−c1 = a2
3c1 + 2c2 = a1

0= a0

Gauss’s Method and back-substitution gives c1 = −a2, and c2 = (3/2)a2 +

(1/2)a1, and 0 = a0. Thus the only condition on elements a0+a1x+a2x2 of the
span is the condition that we knew: as long as there is no constant term a0 = 0,
we can give appropriate coefficients c1 and c2 to describe that polynomial as
an element of the span. For instance, for the polynomial 0 − 4x + 3x2, the
coefficients c1 = −3 and c2 = 5/2 will do. So the span of the given set is
[S] = {a1x+ a2x

2 | a1, a2 ∈ R }.
Incidentally, this shows that the set {x, x2 } spans the same subspace. A space

can have more than one spanning set. Two other sets spanning this subspace are
{x, x2,−x+ 2x2 } and {x, x+ x2, x+ 2x2, . . . }. (Usually we prefer to work with
spanning sets that have only a small number of members.)

2.19 Example The picture below shows the subspaces of R3 that we now know of,
the trivial subspace, the lines through the origin, the planes through the origin,
and the whole space (of course, the picture shows only a few of the infinitely
many subspaces). In the next section we will prove that R3 has no other type of
subspaces, so in fact this picture shows them all.

That picture describes the subspaces as spans of sets with a minimal number
of members. Note that the subspaces fall naturally into levels—planes on
one level, lines on another, etc.—according to how many vectors are in the
minimal-sized spanning set.
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{x

10
0

+ y

01
0

+ z

00
1

}

����������

{x

10
0

+ y

01
0

}

�����

{x

10
0

+ z

00
1

}

��

{x

11
0

+ z

00
1

} · · ·

�
�

������

{x

10
0

}

A
A

{y

01
0

}

HHH
H

{y

21
0

}

��

{y

11
1

} · · ·
XXXXXXXXXXXX

PPPPPPPP

H
HHH

AA

{

00
0

}

The line segments between levels connect subspaces with their superspaces.

So far in this chapter we have seen that to study the properties of linear
combinations, the right setting is a collection that is closed under these combi-
nations. In the first subsection we introduced such collections, vector spaces,
and we saw a great variety of examples. In this subsection we saw still more
spaces, ones that are subspaces of others. In all of the variety there is a com-
monality. Example 2.19 above brings it out: vector spaces and subspaces are
best understood as a span, and especially as a span of a small number of vectors.
The next section studies spanning sets that are minimal.

Exercises

X 2.20 Which of these subsets of the vector space of 2×2 matrices are subspaces
under the inherited operations? For each one that is a subspace, parametrize its
description. For each that is not, give a condition that fails.

(a) {

(
a 0

0 b

)
| a, b ∈ R }

(b) {

(
a 0

0 b

)
| a+ b = 0 }

(c) {

(
a 0

0 b

)
| a+ b = 5 }

(d) {

(
a c

0 b

)
| a+ b = 0, c ∈ R }

X 2.21 Is this a subspace of P2: {a0 + a1x+ a2x
2 | a0 + 2a1 + a2 = 4 }? If it is then

parametrize its description.

X 2.22 Decide if the vector lies in the span of the set, inside of the space.

(a)

20
1

, {

10
0

 ,
00
1

 }, in R3

(b) x− x3, {x2, 2x+ x2, x+ x3 }, in P3
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(c)
(
0 1

4 2

)
, {
(
1 0

1 1

)
,

(
2 0

2 3

)
}, in M2×2

2.23 Which of these are members of the span [{cos2 x, sin2 x }] in the vector space of
real-valued functions of one real variable?

(a) f(x) = 1 (b) f(x) = 3+ x2 (c) f(x) = sin x (d) f(x) = cos(2x)
X 2.24 Which of these sets spans R3? That is, which of these sets has the property

that any three-tall vector can be expressed as a suitable linear combination of the
set’s elements?

(a) {

10
0

 ,
02
0

 ,
00
3

 } (b) {

20
1

 ,
11
0

 ,
00
1

 } (c) {

11
0

 ,
30
0

 }

(d) {

10
1

 ,
31
0

 ,
−1

0

0

 ,
21
5

 } (e) {

21
1

 ,
30
1

 ,
51
2

 ,
60
2

 }

X 2.25 Parametrize each subspace’s description. Then express each subspace as a
span.
(a) The subset {(a b c) | a− c = 0 } of the three-wide row vectors
(b) This subset of M2×2

{

(
a b

c d

)
| a+ d = 0 }

(c) This subset of M2×2

{

(
a b

c d

)
| 2a− c− d = 0 and a+ 3b = 0 }

(d) The subset {a+ bx+ cx3 | a− 2b+ c = 0 } of P3
(e) The subset of P2 of quadratic polynomials p such that p(7) = 0

X 2.26 Find a set to span the given subspace of the given space. (Hint. Parametrize
each.)
(a) the xz-plane in R3

(b) {

xy
z

 | 3x+ 2y+ z = 0 } in R3

(c) {


x

y

z

w

 | 2x+ y+w = 0 and y+ 2z = 0 } in R4

(d) {a0 + a1x+ a2x
2 + a3x

3 | a0 + a1 = 0 and a2 − a3 = 0 } in P3

(e) The set P4 in the space P4

(f) M2×2 in M2×2

2.27 Is R2 a subspace of R3?
X 2.28 Decide if each is a subspace of the vector space of real-valued functions of one

real variable.
(a) The even functions {f : R→ R | f(−x) = f(x) for all x }. For example, two mem-
bers of this set are f1(x) = x2 and f2(x) = cos(x).
(b) The odd functions {f : R→ R | f(−x) = −f(x) for all x }. Two members are
f3(x) = x

3 and f4(x) = sin(x).
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2.29 Example 2.16 says that for any vector ~v that is an element of a vector space
V, the set {r ·~v | r ∈ R } is a subspace of V. (This is of course, simply the span of
the singleton set {~v }.) Must any such subspace be a proper subspace, or can it be
improper?

2.30 An example following the definition of a vector space shows that the solution
set of a homogeneous linear system is a vector space. In the terminology of this
subsection, it is a subspace of Rn where the system has n variables. What about
a non-homogeneous linear system; do its solutions form a subspace (under the
inherited operations)?

2.31 [Cleary] Give an example of each or explain why it would be impossible to do
so.
(a) A nonempty subset of M2×2 that is not a subspace.
(b) A set of two vectors in R2 that does not span the space.

2.32 Example 2.19 shows that R3 has infinitely many subspaces. Does every non-
trivial space have infinitely many subspaces?

2.33 Finish the proof of Lemma 2.9.

2.34 Show that each vector space has only one trivial subspace.

X 2.35 Show that for any subset S of a vector space, the span of the span equals the
span [[S]] = [S]. (Hint. Members of [S] are linear combinations of members of S.
Members of [[S]] are linear combinations of linear combinations of members of S.)

2.36 All of the subspaces that we’ve seen in some way use zero in their description.
For example, the subspace in Example 2.3 consists of all the vectors from R2 with
a second component of zero. In contrast, the collection of vectors from R2 with a
second component of one does not form a subspace (it is not closed under scalar
multiplication). Another example is Example 2.2, where the condition on the
vectors is that the three components add to zero. If the condition there were that
the three components add to one then it would not be a subspace (again, it would
fail to be closed). However, a reliance on zero is not strictly necessary. Consider
the set

{

xy
z

 | x+ y+ z = 1 }

under these operations.x1y1
z1

+

x2y2
z2

 =

x1 + x2 − 1y1 + y2
z1 + z2

 r

xy
z

 =

rx− r+ 1ry

rz


(a) Show that it is not a subspace of R3. (Hint. See Example 2.7).
(b) Show that it is a vector space. Note that by the prior item, Lemma 2.9 can
not apply.
(c) Show that any subspace of R3 must pass through the origin, and so any
subspace of R3 must involve zero in its description. Does the converse hold?
Does any subset of R3 that contains the origin become a subspace when given
the inherited operations?
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2.37 We can give a justification for the convention that the sum of zero-many vectors
equals the zero vector. Consider this sum of three vectors ~v1 +~v2 +~v3.
(a) What is the difference between this sum of three vectors and the sum of the
first two of these three?
(b) What is the difference between the prior sum and the sum of just the first
one vector?
(c) What should be the difference between the prior sum of one vector and the
sum of no vectors?
(d) So what should be the definition of the sum of no vectors?

2.38 Is a space determined by its subspaces? That is, if two vector spaces have the
same subspaces, must the two be equal?

2.39 (a) Give a set that is closed under scalar multiplication but not addition.
(b) Give a set closed under addition but not scalar multiplication.
(c) Give a set closed under neither.

2.40 Show that the span of a set of vectors does not depend on the order in which
the vectors are listed in that set.

2.41 Which trivial subspace is the span of the empty set? Is it

{

00
0

 } ⊆ R3, or {0+ 0x } ⊆ P1,

or some other subspace?

2.42 Show that if a vector is in the span of a set then adding that vector to the set
won’t make the span any bigger. Is that also ‘only if’?

X 2.43 Subspaces are subsets and so we naturally consider how ‘is a subspace of’
interacts with the usual set operations.
(a) If A,B are subspaces of a vector space, must their intersection A ∩ B be a
subspace? Always? Sometimes? Never?
(b) Must the union A ∪ B be a subspace?
(c) If A is a subspace, must its complement be a subspace?

(Hint. Try some test subspaces from Example 2.19.)

X 2.44 Does the span of a set depend on the enclosing space? That is, if W is a
subspace of V and S is a subset of W (and so also a subset of V), might the span
of S in W differ from the span of S in V?

2.45 Is the relation ‘is a subspace of’ transitive? That is, if V is a subspace of W
and W is a subspace of X, must V be a subspace of X?

X 2.46 Because ‘span of’ is an operation on sets we naturally consider how it interacts
with the usual set operations.
(a) If S ⊆ T are subsets of a vector space, is [S] ⊆ [T ]? Always? Sometimes?
Never?
(b) If S, T are subsets of a vector space, is [S ∪ T ] = [S] ∪ [T ]?
(c) If S, T are subsets of a vector space, is [S ∩ T ] = [S] ∩ [T ]?
(d) Is the span of the complement equal to the complement of the span?

2.47 Reprove Lemma 2.15 without doing the empty set separately.
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2.48 Find a structure that is closed under linear combinations, and yet is not a
vector space.
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II Linear Independence

The prior section shows how to understand a vector space as a span, as an
unrestricted linear combination of some of its elements. For example, the space
of linear polynomials {a+ bx | a, b ∈ R } is spanned by the set {1, x }. The prior
section also showed that a space can have many sets that span it. Two more
sets that span the space of linear polynomials are {1, 2x } and {1, x, 2x }.

At the end of that section we described some spanning sets as ‘minimal’
but we never precisely defined that word. We could mean that a spanning
set is minimal if it contains the smallest number of members of any set with
the same span, so that {1, x, 2x } is not minimal because it has three members
while we can give two-element sets spanning the same space. Or we could mean
that a spanning set is minimal when it has no elements that we can remove
without changing the span. Under this meaning {1, x, 2x } is not minimal because
removing the 2x to get {1, x } leaves the span unchanged.

The first sense of minimality appears to be a global requirement, in that
to check if a spanning set is minimal we seemingly must look at all the sets
that span and find one with the least number of elements. The second sense
of minimality is local since we need to look only at the set and consider the
span with and without various elements. For instance, using the second sense
we could compare the span of {1, x, 2x } with the span of {1, x } and note that 2x
is a “repeat” in that its removal doesn’t shrink the span.

In this section we will use the second sense of ‘minimal spanning set’ because
of this technical convenience. However, the most important result of this book
is that the two senses coincide. We will prove that in the next section.

II.1 Definition and Examples

We saw “repeats” in the first chapter. There, Gauss’s Method turned them into
0 = 0 equations.

1.1 Example Recall the Statics example from Chapter One’s opening. We got
two balances with the pair of unknown-mass objects, one at 40 cm and 15 cm
and another at −50 cm and 25 cm, and we then computed the value of those
masses. Had we instead gotten the second balance at 20 cm and 7.5 cm then
Gauss’s Method on the resulting two-equations, two-unknowns system would
not have yielded a solution, it would have yielded a 0 = 0 equation along with
an equation containing a free variable. Intuitively, the problem is that (20 7.5)
is half of (40 15), that is, (20 7.5) is in the span of the set {(40 15) } and so is
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repeated data. We would have been trying to solve a two-unknowns problem
with essentially only one piece of information.

We take ~v to be a “repeat” of the vectors in a set S if ~v ∈ [S] so that it depends
on, that is, is expressible in terms of, elements of the set ~v = c1~s1 + · · ·+ cn~sn.

1.2 Lemma Where V is a vector space, S is a subset of that space, and ~v is an
element of that space, [S ∪ {~v }] = [S] if and only if ~v ∈ [S].

Proof Half of the if and only if is immediate: if ~v /∈ [S] then the sets are not
equal because ~v ∈ [S ∪ {~v }].

For the other half assume that ~v ∈ [S] so that ~v = c1~s1+ · · ·+ cn~sn for some
scalars ci and vectors ~si ∈ S. We will use mutual containment to show that the
sets [S ∪ {~v }] and [S] are equal. The containment [S ∪ {~v }] ⊇ [S] is clear.

To show containment in the other direction let ~w be an element of [S ∪ {~v }].
Then ~w is a linear combination of elements of S ∪ {~v }, which we can write as
~w = cn+1~sn+1 + · · · + cn+k~sn+k + cn+k+1~v. (Possibly some of the ~si’s from
~w’s equation are the same as some of those from ~v’s equation but that does not
matter.) Expand ~v.

~w = cn+1~sn+1 + · · ·+ cn+k~sn+k + cn+k+1 · (c1~s1 + · · ·+ cn~sn)

Recognize the right hand side as a linear combination of linear combinations of
vectors from S. Thus ~w ∈ [S]. QED

The discussion at the section’s opening involved removing vectors instead of
adding them.

1.3 Corollary For ~v ∈ S, omitting that vector does not shrink the span [S] =

[S− {~v }] if and only if it is dependent on other vectors in the set ~v ∈ [S].

The corollary says that to know whether removing a vector will decrease the
span, we need to know whether the vector is a linear combination of others in
the set.

1.4 Definition A multiset subset of a vector space is linearly independent if none
of its elements is a linear combination of the others.∗ Otherwise it is linearly
dependent .

That definition’s use of the word ‘others’ means that writing ~v as a linear
combination with ~v = 1 ·~v does not count.
∗More information on multisets is in the appendix. Most of the time we won’t need the

set-multiset distinction and we will follow the standard terminology of referring to a linearly
independent or dependent ‘set’. Remark 1.12 explains why the definition requires a multiset.
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Observe that, although this way of writing one vector as a combination of
the others

~s0 = c1~s1 + c2~s2 + · · ·+ cn~sn
visually sets off ~s0, algebraically there is nothing special about that vector in
that equation. For any ~si with a coefficient ci that is non-0 we can rewrite to
isolate ~si.

~si = (1/ci)~s0 + · · ·+ (−ci−1/ci)~si−1 + (−ci+1/ci)~si+1 + · · ·+ (−cn/ci)~sn

When we don’t want to single out any vector we will instead say that ~s0,~s1, . . . ,~sn
are in a linear relationship and put all of the vectors on the same side. The
next result rephrases the linear independence definition in this style. It is how
we usually compute whether a finite set is dependent or independent.

1.5 Lemma A subset S of a vector space is linearly independent if and only if
among its elements the only linear relationship c1~s1 + · · · + cn~sn = ~0 (with
~si 6= ~sj for all i 6= j) is the trivial one c1 = 0, . . . , cn = 0.

Proof If S is linearly independent then no vector ~si is a linear combination
of other vectors from S so there is no linear relationship where some of the ~s ’s
have nonzero coefficients.

If S is not linearly independent then some ~si is a linear combination ~si =

c1~s1+ · · ·+ci−1~si−1+ci+1~si+1+ · · ·+cn~sn of other vectors from S. Subtracting
~si from both sides gives a relationship involving a nonzero coefficient, the −1 in
front of ~si. QED

1.6 Example In the vector space of two-wide row vectors, the two-element set
{(40 15), (−50 25) } is linearly independent. To check this, take

c1 · (40 15) + c2 · (−50 25) = (0 0)

and solve the resulting system.

40c1 − 50c2 = 0

15c1 + 25c2 = 0

−(15/40)ρ1+ρ2−→ 40c1 − 50c2 = 0

(175/4)c2 = 0

Both c1 and c2 are zero. So the only linear relationship between the two given
row vectors is the trivial relationship.

In the same vector space, the set {(40 15), (20 7.5) } is linearly dependent
since we can satisfy c1 · (40 15)+c2 · (20 7.5) = (0 0) with c1 = 1 and c2 = −2.

1.7 Example The set {1+ x, 1− x } is linearly independent in P2, the space of
quadratic polynomials with real coefficients, because

0+ 0x+ 0x2 = c1(1+ x) + c2(1− x) = (c1 + c2) + (c1 − c2)x+ 0x
2
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gives
c1 + c2 = 0

c1 − c2 = 0

−ρ1+ρ2−→ c1 + c2 = 0

2c2 = 0

since polynomials are equal only if their coefficients are equal. Thus, the only
linear relationship between these two members of P2 is the trivial one.

1.8 Example The rows of this matrix

A =

2 3 1 0

0 −1 0 −2

0 0 0 1


form a linearly independent set. This is easy to check for this case but also recall
that Lemma One.III.2.5 shows that the rows of any echelon form matrix form a
linearly independent set.

1.9 Example In R3, where

~v1 =

34
5

 ~v2 =

29
2

 ~v3 =

 418
4


the set S = {~v1,~v2,~v3 } is linearly dependent because this is a relationship

0 ·~v1 + 2 ·~v2 − 1 ·~v3 = ~0

where not all of the scalars are zero (the fact that some of the scalars are zero
doesn’t matter).

That example illustrates why, although Definition 1.4 is a clearer statement
of what independence means, Lemma 1.5 is better for computations. Working
straight from the definition, someone trying to compute whether S is linearly
independent would start by setting ~v1 = c2~v2 + c3~v3 and concluding that there
are no such c2 and c3. But knowing that the first vector is not dependent on the
other two is not enough. This person would have to go on to try ~v2 = c1~v1+c3~v3,
in order to find the dependence c1 = 0, c3 = 1/2. Lemma 1.5 gets the same
conclusion with only one computation.

1.10 Example The empty subset of a vector space is linearly independent. There
is no nontrivial linear relationship among its members as it has no members.

1.11 Example In any vector space, any subset containing the zero vector is linearly
dependent. One example is, in the space P2 of quadratic polynomials, the subset
{1+ x, x+ x2, 0 }. It is linearly dependent because 0 ·~v1 + 0 ·~v2 + 1 ·~0 = ~0 is a
nontrivial relationship, since not all of the coefficients are zero.

A subtler way to see that this subset is dependent is to remember that the
zero vector is equal to the trivial sum, the sum of the empty set. So any set
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containing the zero vector has an element that is a combination of a subset of
other vectors from the set, specifically, the zero vector is a combination of the
empty subset.

1.12 Remark [Velleman] Definition 1.4 says that when we decide whether some S
is linearly independent, we must consider it as a multiset. (Recall that in a set
repeated elements collapse so the set {0, 1, 0 } equals the set {0, 1 }, whereas in
a multiset they do not collapse so the multiset {0, 1, 0 } contains the element 0
twice.) Here is an example showing that we can need multiset rather than set.
In the next chapter we will look at functions from one vector space to another.
Let the function f : P1 → R be f(a+ bx) = a so that for instance f(1+ 2x) = 1.
Consider the subset B = {1, 1+ x } of the domain. The images of the elements
are f(1) = 1 and f(1+ x) = 1. Because in a set repeated elements collapse these
images form a set with one element {1 }, which is linearly independent. But in
a multiset repeated elements do not collapse so these images form a linearly
dependent multiset {1, 1 }. The second case is the correct one: B is linearly
independent but its image under f is linearly dependent.

1.13 Corollary A set S is linearly independent if and only if for any ~v ∈ S, its
removal shrinks the span [S− {v }] ⊂ [S].

Proof This follows from Corollary 1.3. If S is linearly independent then none
of its vectors is dependent on the other elements, so removal of any vector will
shrink the span. If S is not linearly independent then it contains a vector that
is dependent on other elements of the set, and removal of that vector will not
shrink the span. QED

So a spanning set is minimal if and only if it is linearly independent.
The prior result addresses removing elements from a linearly independent

set. The next one adds elements.

1.14 Lemma Suppose that S is linearly independent and that ~v /∈ S. Then the
set S ∪ {~v } is linearly independent if and only if ~v /∈ [S].

Proof We will show that S ∪ {~v } is not linearly independent if and only if
~v ∈ [S].

Suppose first that v ∈ [S]. Express ~v as a combination ~v = c1~s1 + · · ·+ cn~sn.
Rewrite that ~0 = c1~s1 + · · ·+ cn~sn − 1 ·~v. Since v /∈ S, it does not equal any of
the ~si so this is a nontrivial linear dependence among the elements of S ∪ {~v }.
Thus that set is not linearly independent.

Now suppose that S∪{~v } is not linearly independent and consider a nontrivial
dependence among its members ~0 = c1~s1 + · · · + cn~sn + cn+1 · ~v. If cn+1 = 0
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then that is a dependence among the elements of S, but we are assuming that S
is independent, so cn+1 6= 0. Rewrite the equation as ~v = (c1/cn+1)~s1 + · · ·+
(cn/cn+1)~sn to get ~v ∈ [S] QED

1.15 Example This subset of R3 is linearly independent.

S = {

10
0

 }

The span of S is the x-axis. Here are two supersets, one that is linearly dependent
and the other independent.

dependent: {

10
0

 ,
−3

0

0

 } independent: {

10
0

 ,
01
0

 }

We got the dependent superset by adding a vector from the x-axis and so the
span did not grow. We got the independent superset by adding a vector that
isn’t in [S], because it has a nonzero y component, causing the span to grow.

For the independent set

S = {

10
0

 ,
01
0

 }

the span [S] is the xy-plane. Here are two supersets.

dependent: {

10
0

 ,
01
0

 ,
 3

−2

0

 } independent: {

10
0

 ,
01
0

 ,
00
1

 }

As above, the additional member of the dependent superset comes from [S],
the xy-plane, while the added member of the independent superset comes from
outside of that span.

Finally, consider this independent set

S = {

10
0

 ,
01
0

 ,
00
1

 }

with [S] = R3. We can get a linearly dependent superset.

dependent: {

10
0

 ,
01
0

 ,
00
1

 ,
 2

−1

3

 }
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But there is no linearly independent superset os S. One way to see that is to
note that for any vector that we would add to S, the equationxy

z

 = c1

10
0

+ c2

01
0

+ c3

00
1


has a solution c1 = x, c2 = y, and c3 = z. Another way to see it is that we
cannot add any vectors from outside of the span [S] because that span is R3.

1.16 Corollary In a vector space, any finite set has a linearly independent subset
with the same span.

Proof If S = {~s1, . . . ,~sn } is linearly independent then S itself satisfies the
statement, so assume that it is linearly dependent.

By the definition of dependent, S contains a vector ~v1 that is a linear
combination of the others. Define the set S1 = S− {~v1 }. By Corollary 1.3 the
span does not shrink [S1] = [S].

If S1 is linearly independent then we are done. Otherwise iterate: take a
vector ~v2 that is a linear combination of other members of S1 and discard it
to derive S2 = S1 − {~v2 } such that [S2] = [S1]. Repeat this until a linearly
independent set Sj appears; one must appear eventually because S is finite and
the empty set is linearly independent. (Formally, this argument uses induction
on the number of elements in S. Exercise 40 asks for the details.) QED

Thus if we have a set that is linearly dependent then we can, without changing
the span, pare down by discarding what we have called “repeat” vectors.

1.17 Example This set spans R3 (the check is routine) but is not linearly inde-
pendent.

S = {

10
0

 ,
02
0

 ,
12
0

 ,
 0

−1

1

 ,
33
0

 }

We will calculate which vectors to drop in order to get a subset that is independent
but has the same span. This linear relationship

c1

10
0

+ c2

02
0

+ c3

12
0

+ c4

 0

−1

1

+ c5

33
0

 =

00
0

 (∗)

gives a system
c1 + c3 + + 3c5 = 0

2c2 + 2c3 − c4 + 3c5 = 0

c4 = 0
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whose solution set has this parametrization.

{


c1
c2
c3
c4
c5

 = c3


−1

−1

1

0

0

+ c5


−3

−3/2

0

0

1

 | c3, c5 ∈ R }

Set c5 = 1 and c3 = 0 to get an instance of (∗).

−3 ·

10
0

−
3

2
·

02
0

+ 0 ·

12
0

+ 0 ·

 0

−1

1

+ 1 ·

33
0

 =

00
0


This shows that the vector from S that we’ve associated with c5 is in the span
of the set of c1’s vector and c2’s vector. We can discard S’s fifth vector without
shrinking the span.

Similarly, set c3 = 1, and c5 = 0 to get an instance of (∗) that shows we can
discard S’s third vector without shrinking the span. Thus this set has the same
span as S.

{

10
0

 ,
02
0

 ,
 0

−1

1

 }

The check that it is linearly independent is routine.

1.18 Corollary A subset S = {~s1, . . . ,~sn } of a vector space is linearly dependent
if and only if some ~si is a linear combination of the vectors ~s1, . . . , ~si−1 listed
before it.

Proof Consider S0 = { }, S1 = { ~s1 }, S2 = {~s1,~s2 }, etc. Some index i > 1 is the
first one with Si−1 ∪ {~si } linearly dependent, and there ~si ∈ [Si−1]. QED

The proof of Corollary 1.16 describes producing a linearly independent set
by shrinking, by taking subsets. And the proof of Corollary 1.18 describes
finding a linearly dependent set by taking supersets. We finish this subsection
by considering how linear independence and dependence interact with the subset
relation between sets.

1.19 Lemma Any subset of a linearly independent set is also linearly independent.
Any superset of a linearly dependent set is also linearly dependent.

Proof Both are clear. QED
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Restated, subset preserves independence and superset preserves dependence.
Those are two of the four possible cases. The third case, whether subset

preserves linear dependence, is covered by Example 1.17, which gives a linearly
dependent set S with one subset that is linearly dependent and another that is
independent. The fourth case, whether superset preserves linear independence,
is covered by Example 1.15, which gives cases where a linearly independent set
has both an independent and a dependent superset. This table summarizes.

Ŝ ⊂ S Ŝ ⊃ S
S independent Ŝ must be independent Ŝ may be either
S dependent Ŝ may be either Ŝ must be dependent

Example 1.15 has something else to say about the interaction between linear
independence and superset. It names a linearly independent set that is maximal
in that it has no supersets that are linearly independent. By Lemma 1.14 a
linearly independent set is maximal if and only if it spans the entire space,
because that is when all the vectors in the space are already in the span. This
nicely complements Lemma 1.13, that a spanning set is minimal if and only if it
is linearly independent.

Exercises
X 1.20 Decide whether each subset of R3 is linearly dependent or linearly indepen-

dent.

(a) {

 1

−3

5

 ,
22
4

 ,
 4

−4

14

 }

(b) {

17
7

 ,
27
7

 ,
37
7

 }

(c) {

 0

0

−1

 ,
10
4

 }

(d) {

99
0

 ,
20
1

 ,
 3

5

−4

 ,
1212
−1

 }

X 1.21 Which of these subsets of P3 are linearly dependent and which are indepen-
dent?
(a) {3− x+ 9x2, 5− 6x+ 3x2, 1+ 1x− 5x2 }

(b) {−x2, 1+ 4x2 }

(c) {2+ x+ 7x2, 3− x+ 2x2, 4− 3x2 }

(d) {8+ 3x+ 3x2, x+ 2x2, 2+ 2x+ 2x2, 8− 2x+ 5x2 }

X 1.22 Prove that each set {f, g } is linearly independent in the vector space of all
functions from R+ to R.
(a) f(x) = x and g(x) = 1/x
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(b) f(x) = cos(x) and g(x) = sin(x)
(c) f(x) = ex and g(x) = ln(x)

X 1.23 Which of these subsets of the space of real-valued functions of one real variable
is linearly dependent and which is linearly independent? (We have abbreviated
some constant functions; e.g., in the first item, the ‘2’ stands for the constant
function f(x) = 2.)

(a) {2, 4 sin2(x), cos2(x) } (b) {1, sin(x), sin(2x) } (c) {x, cos(x) }
(d) {(1+ x)2, x2 + 2x, 3 } (e) {cos(2x), sin2(x), cos2(x) } (f) {0, x, x2 }

1.24 Does the equation sin2(x)/ cos2(x) = tan2(x) show that this set of functions
{sin2(x), cos2(x), tan2(x) } is a linearly dependent subset of the set of all real-valued
functions with domain the interval (−π/2..π/2) of real numbers between −π/2 and
π/2)?

1.25 Is the xy-plane subset of the vector space R3 linearly independent?
X 1.26 Show that the nonzero rows of an echelon form matrix form a linearly indepen-

dent set.
X 1.27 (a) Show that if the set {~u,~v, ~w } is linearly independent then so is the set

{~u, ~u+~v, ~u+~v+ ~w }.
(b) What is the relationship between the linear independence or dependence of
{~u,~v, ~w } and the independence or dependence of {~u−~v,~v− ~w, ~w− ~u }?

1.28 Example 1.10 shows that the empty set is linearly independent.
(a) When is a one-element set linearly independent?
(b) How about a set with two elements?

1.29 In any vector space V, the empty set is linearly independent. What about all
of V?

1.30 Show that if {~x,~y,~z } is linearly independent then so are all of its proper
subsets: {~x,~y }, {~x,~z }, {~y,~z }, {~x },{~y }, {~z }, and { }. Is that ‘only if’ also?

1.31 (a) Show that this

S = {

11
0

 ,
−1

2

0

 }

is a linearly independent subset of R3.
(b) Show that 32

0


is in the span of S by finding c1 and c2 giving a linear relationship.

c1

11
0

+ c2

−1

2

0

 =

32
0


Show that the pair c1, c2 is unique.
(c) Assume that S is a subset of a vector space and that ~v is in [S], so that ~v is a
linear combination of vectors from S. Prove that if S is linearly independent then
a linear combination of vectors from S adding to ~v is unique (that is, unique up
to reordering and adding or taking away terms of the form 0 · ~s). Thus S as a
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spanning set is minimal in this strong sense: each vector in [S] is a combination
of elements of S a minimum number of times—only once.
(d) Prove that it can happen when S is not linearly independent that distinct
linear combinations sum to the same vector.

1.32 Prove that a polynomial gives rise to the zero function if and only if it is
the zero polynomial. (Comment. This question is not a Linear Algebra matter
but we often use the result. A polynomial gives rise to a function in the natural
way: x 7→ cnx

n + · · ·+ c1x+ c0.)

1.33 Return to Section 1.2 and redefine point, line, plane, and other linear surfaces
to avoid degenerate cases.

1.34 (a) Show that any set of four vectors in R2 is linearly dependent.
(b) Is this true for any set of five? Any set of three?
(c) What is the most number of elements that a linearly independent subset of
R2 can have?

X 1.35 Is there a set of four vectors in R3 such that any three form a linearly independent
set?

1.36 Must every linearly dependent set have a subset that is dependent and a subset
that is independent?

1.37 In R4 what is the biggest linearly independent set you can find? The smallest?
The biggest linearly dependent set? The smallest? (‘Biggest’ and ‘smallest’ mean
that there are no supersets or subsets with the same property.)

X 1.38 Linear independence and linear dependence are properties of sets. We can thus
naturally ask how the properties of linear independence and dependence act with
respect to the familiar elementary set relations and operations. In this body of this
subsection we have covered the subset and superset relations. We can also consider
the operations of intersection, complementation, and union.
(a) How does linear independence relate to intersection: can an intersection of
linearly independent sets be independent? Must it be?
(b) How does linear independence relate to complementation?
(c) Show that the union of two linearly independent sets can be linearly indepen-
dent.
(d) Show that the union of two linearly independent sets need not be linearly
independent.

1.39 Continued from prior exercise. What is the interaction between the property
of linear independence and the operation of union?
(a) We might conjecture that the union S∪T of linearly independent sets is linearly
independent if and only if their spans have a trivial intersection [S] ∩ [T ] = {~0 }.
What is wrong with this argument for the ‘if’ direction of that conjecture? “If
the union S ∪ T is linearly independent then the only solution to c1~s1 + · · · +
cn~sn + d1~t1 + · · · + dm~tm = ~0 is the trivial one c1 = 0, . . . , dm = 0. So any
member of the intersection of the spans must be the zero vector because in
c1~s1 + · · ·+ cn~sn = d1~t1 + · · ·+ dm~tm each scalar is zero.”
(b) Give an example showing that the conjecture is false.
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(c) Find linearly independent sets S and T so that the union of S− (S ∩ T) and
T−(S∩T) is linearly independent, but the union S∪T is not linearly independent.
(d) Characterize when the union of two linearly independent sets is linearly
independent, in terms of the intersection of spans.

X 1.40 For Corollary 1.16,
(a) fill in the induction for the proof;
(b) give an alternate proof that starts with the empty set and builds a sequence
of linearly independent subsets of the given finite set until one appears with the
same span as the given set.

1.41 With a some calculation we can get formulas to determine whether or not a set
of vectors is linearly independent.
(a) Show that this subset of R2

{

(
a

c

)
,

(
b

d

)
}

is linearly independent if and only if ad− bc 6= 0.
(b) Show that this subset of R3

{

ad
g

 ,
be
h

 ,
cf
i

 }

is linearly independent iff aei+ bfg+ cdh− hfa− idb− gec 6= 0.
(c) When is this subset of R3

{

ad
g

 ,
be
h

 }

linearly independent?
(d) This is an opinion question: for a set of four vectors from R4, must there be a
formula involving the sixteen entries that determines independence of the set?
(You needn’t produce such a formula, just decide if one exists.)

X 1.42 (a) Prove that a set of two perpendicular nonzero vectors from Rn is linearly
independent when n > 1.
(b) What if n = 1? n = 0?
(c) Generalize to more than two vectors.

1.43 Consider the set of functions from the interval (−1 . . . 1) ⊆ R to R.
(a) Show that this set is a vector space under the usual operations.
(b) Recall the formula for the sum of an infinite geometric series: 1+x+x2+ · · · =
1/(1− x) for all x ∈ (−1..1). Why does this not express a dependence inside of
the set {g(x) = 1/(1− x), f0(x) = 1, f1(x) = x, f2(x) = x2, . . . } (in the vector space
that we are considering)? (Hint. Review the definition of linear combination.)
(c) Show that the set in the prior item is linearly independent.

This shows that some vector spaces exist with linearly independent subsets that
are infinite.

1.44 Show that, where S is a subspace of V, if a subset T of S is linearly independent
in S then T is also linearly independent in V. Is that ‘only if’?
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III Basis and Dimension

The prior section ends with the observation that a spanning set is minimal when
it is linearly independent and a linearly independent set is maximal when it spans
the space. So the notions of minimal spanning set and maximal independent set
coincide. In this section we will name this idea and study its properties.

III.1 Basis

1.1 Definition A basis for a vector space is a sequence of vectors that is linearly
independent and that spans the space.

Because a basis is a sequence, meaning that bases are different if they contain
the same elements but in different orders, we denote it with angle brackets
〈~β1, ~β2, . . .〉.∗ (A sequence is linearly independent if the multiset consisting of
the elements of the sequence in is independent. Similarly, a sequence spans the
space if the set of elements of the sequence spans the space.)

1.2 Example This is a basis for R2.

〈

(
2

4

)
,

(
1

1

)
〉

It is linearly independent

c1

(
2

4

)
+ c2

(
1

1

)
=

(
0

0

)
=⇒ 2c1 + 1c2 = 0

4c1 + 1c2 = 0
=⇒ c1 = c2 = 0

and it spans R2.

2c1 + 1c2 = x

4c1 + 1c2 = y
=⇒ c2 = 2x− y and c1 = (y− x)/2

1.3 Example This basis for R2 differs from the prior one

〈

(
1

1

)
,

(
2

4

)
〉

because it is in a different order. The verification that it is a basis is just as in
the prior example.
∗ More information on sequences is in the appendix.
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1.4 Example The space R2 has many bases. Another one is this.

〈

(
1

0

)
,

(
0

1

)
〉

The verification is easy.

1.5 Definition For any Rn

En = 〈


1

0
...
0

 ,

0

1
...
0

 , . . . ,

0

0
...
1

〉
is the standard (or natural) basis. We denote these vectors ~e1, . . . ,~en.

Calculus books denote R2’s standard basis vectors as ~ı and ~ instead of ~e1 and
~e2 and they denote to R3’s standard basis vectors as ~ı, ~, and ~k instead of ~e1,
~e2, and ~e3. Note that ~e1 means something different in a discussion of R3 than
it means in a discussion of R2.
1.6 Example Consider the space {a · cos θ+ b · sin θ | a, b ∈ R } of functions of the
real variable θ. This is a natural basis 〈cos θ, sin θ〉 = 〈1 ·cos θ+0 ·sin θ, 0 ·cos θ+
1 · sin θ〉. A more generic basis for this space is 〈cos θ − sin θ, 2 cos θ + 3 sin θ〉.
Verification that these two are bases is Exercise 25.

1.7 Example A natural basis for the vector space of cubic polynomials P3 is
〈1, x, x2, x3〉. Two other bases for this space are 〈x3, 3x2, 6x, 6〉 and 〈1, 1+ x, 1+
x+ x2, 1+ x+ x2 + x3〉. Checking that each is linearly independent and spans
the space is easy.

1.8 Example The trivial space {~0 } has only one basis, the empty one 〈〉.
1.9 Example The space of finite-degree polynomials has a basis with infinitely
many elements 〈1, x, x2, . . .〉.
1.10 Example We have seen bases before. In the first chapter we described the
solution set of homogeneous systems such as this one

x+ y −w= 0

z+w= 0

by parametrizing.

{


−1

1

0

0

y+


1

0

−1

1

w | y,w ∈ R }
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Thus the vector space of solutions is the span of a two-element set. This two-
vector set is also linearly independent, which is easy to check. Therefore the
solution set is a subspace of R4 with a basis comprised of these two vectors.

1.11 Example Parametrization finds bases for other vector spaces, not just for
solution sets of homogeneous systems. To find a basis for this subspace of M2×2

{

(
a b

c 0

)
| a+ b− 2c = 0 }

we rewrite the condition as a = −b+ 2c.

{

(
−b+ 2c b

c 0

)
| b, c ∈ R } = {b

(
−1 1

0 0

)
+ c

(
2 0

1 0

)
| b, c ∈ R }

Thus, this is a natural candidate for a basis.

〈

(
−1 1

0 0

)
,

(
2 0

1 0

)
〉

The above work shows that it spans the space. Linear independence is also easy.

Consider again Example 1.2. To verify that the set spans the space we looked
at linear combinations that total to a member of the space c1~β1 + c2~β2 =

(
x
y

)
.

We only noted in that example that such a combination exists, that for each x, y
there exists a c1, c2, but in fact the calculation also shows that the combination
is unique: c1 must be (y− x)/2 and c2 must be 2x− y.

1.12 Theorem In any vector space, a subset is a basis if and only if each vector
in the space can be expressed as a linear combination of elements of the subset
in one and only one way.

We consider linear combinations to be the same if they have the same summands
but in a different order, or if they differ only in the addition or deletion of terms
of the form ‘0 · ~β’.
Proof A sequence is a basis if and only if its vectors form a set that spans and
that is linearly independent. A subset is a spanning set if and only if each vector
in the space is a linear combination of elements of that subset in at least one
way. Thus we need only show that a spanning subset is linearly independent if
and only if every vector in the space is a linear combination of elements from
the subset in at most one way.

Consider two expressions of a vector as a linear combination of the members
of the subset. Rearrange the two sums, and if necessary add some 0 · ~βi
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terms, so that the two sums combine the same ~β’s in the same order: ~v =

c1~β1 + c2~β2 + · · ·+ cn~βn and ~v = d1~β1 + d2~β2 + · · ·+ dn~βn. Now

c1~β1 + c2~β2 + · · ·+ cn~βn = d1~β1 + d2~β2 + · · ·+ dn~βn

holds if and only if

(c1 − d1)~β1 + · · ·+ (cn − dn)~βn = ~0

holds. So, asserting that each coefficient in the lower equation is zero is the same
thing as asserting that ci = di for each i, that is, that every vector is expressible
as a linear combination of the ~β’s in a unique way. QED

1.13 Definition In a vector space with basis B the representation of ~v with
respect to B is the column vector of the coefficients used to express ~v as a linear
combination of the basis vectors:

RepB(~v) =


c1
c2
...
cn


where B = 〈~β1, . . . , ~βn〉 and ~v = c1~β1 + c2~β2 + · · · + cn~βn. The c’s are the
coordinates of ~v with respect to B.

1.14 Example In P3, with respect to the basis B = 〈1, 2x, 2x2, 2x3〉, the represen-
tation of x+ x2 is

RepB(x+ x
2) =


0

1/2

1/2

0


B

because x + x2 = 0 · 1 + (1/2) · 2x + (1/2) · 2x2 + 0 · 2x3. With respect to a
different basis D = 〈1+ x, 1− x, x+ x2, x+ x3〉, the representation is different.

RepD(x+ x
2) =


0

0

1

0


D

(When there is more than one basis around, to help keep straight which repre-
sentation is with respect to which basis we often write it as a subscript on the
column vector.)



118 Chapter Two. Vector Spaces

1.15 Remark Definition 1.1 requires that a basis be a sequence because without
that we couldn’t write these coordinates in a fixed order.

1.16 Example In R2, where ~v =
(
3
2

)
, to find the coordinates of that vector with

respect to the basis

B = 〈

(
1

1

)
,

(
0

2

)
〉

we solve

c1

(
1

1

)
+ c2

(
0

2

)
=

(
3

2

)
and get that c1 = 3 and c2 = −1/2.

RepB(~v) =

(
3

−1/2

)

1.17 Remark This use of column notation and the term ‘coordinate’ has both a
disadvantage and an advantage. The disadvantage is that representations look
like vectors from Rn, which can be confusing when the vector space is Rn, as in
the prior example. We must infer the intent from the context. For example, the
phrase ‘in R2, where ~v =

(
3
2

)
’ refers to the plane vector that, when in canonical

position, ends at (3, 2). And in the end of that example, although we’ve omitted
a subscript B from the column, that the right side is a representation is clear
from the context.

The advantage of the notation and the term is that they generalize the
familiar case: in Rn and with respect to the standard basis En, the vector
starting at the origin and ending at (v1, . . . , vn) has this representation.

RepEn(

v1...
vn

) =

v1...
vn


En

Our main use of representations will come later but the definition appears
here because the fact that every vector is a linear combination of basis vectors in
a unique way is a crucial property of bases, and also to help make a point. For
calculation of coordinates among other things, we shall restrict our attention
to spaces with bases having only finitely many elements. That will start in the
next subsection.

Exercises

1.18 Decide if each is a basis for P2.
(a) 〈x2 − x+ 1, 2x+ 1, 2x− 1〉 (b) 〈x+ x2, x− x2〉

X 1.19 Decide if each is a basis for R3.
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(a) 〈

12
3

 ,
32
1

 ,
00
1

〉 (b) 〈

12
3

 ,
32
1

〉 (c) 〈

 0

2

−1

 ,
11
1

 ,
25
0

〉
(d) 〈

 0

2

−1

 ,
11
1

 ,
13
0

〉
X 1.20 Represent the vector with respect to the basis.

(a)
(
1

2

)
, B = 〈

(
1

1

)
,

(
−1

1

)
〉 ⊆ R2

(b) x2 + x3, D = 〈1, 1+ x, 1+ x+ x2, 1+ x+ x2 + x3〉 ⊆ P3

(c)


0

−1

0

1

, E4 ⊆ R4

1.21 Find a basis for P2, the space of all quadratic polynomials. Must any such
basis contain a polynomial of each degree: degree zero, degree one, and degree two?

1.22 Find a basis for the solution set of this system.
x1 − 4x2 + 3x3 − x4 = 0

2x1 − 8x2 + 6x3 − 2x4 = 0
X 1.23 Find a basis for M2×2, the space of 2×2 matrices.
X 1.24 Find a basis for each.

(a) The subspace {a2x
2 + a1x+ a0 | a2 − 2a1 = a0 } of P2

(b) The space of three-wide row vectors whose first and second components add
to zero
(c) This subspace of the 2×2 matrices

{

(
a b

0 c

)
| c− 2b = 0 }

1.25 Check Example 1.6.
X 1.26 Find the span of each set and then find a basis for that span.

(a) {1+ x, 1+ 2x } in P2 (b) {2− 2x, 3+ 4x2 } in P2

X 1.27 Find a basis for each of these subspaces of the space P3 of cubic polynomi-
als.
(a) The subspace of cubic polynomials p(x) such that p(7) = 0
(b) The subspace of polynomials p(x) such that p(7) = 0 and p(5) = 0
(c) The subspace of polynomials p(x) such that p(7) = 0, p(5) = 0, and p(3) = 0
(d) The space of polynomials p(x) such that p(7) = 0, p(5) = 0, p(3) = 0,
and p(1) = 0

1.28 We’ve seen that the result of reordering a basis can be another basis. Must it
be?

1.29 Can a basis contain a zero vector?
X 1.30 Let 〈~β1, ~β2, ~β3〉 be a basis for a vector space.

(a) Show that 〈c1~β1, c2~β2, c3~β3〉 is a basis when c1, c2, c3 6= 0. What happens
when at least one ci is 0?
(b) Prove that 〈~α1, ~α2, ~α3〉 is a basis where ~αi = ~β1 + ~βi.

1.31 Find one vector ~v that will make each into a basis for the space.
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(a) 〈
(
1

1

)
,~v〉 in R2 (b) 〈

11
0

 ,
01
0

 ,~v〉 in R3 (c) 〈x, 1+ x2,~v〉 in P2

X 1.32 Where 〈~β1, . . . , ~βn〉 is a basis, show that in this equation

c1~β1 + · · ·+ ck~βk = ck+1~βk+1 + · · ·+ cn~βn
each of the ci’s is zero. Generalize.

1.33 A basis contains some of the vectors from a vector space; can it contain them
all?

1.34 Theorem 1.12 shows that, with respect to a basis, every linear combination is
unique. If a subset is not a basis, can linear combinations be not unique? If so,
must they be?

X 1.35 A square matrix is symmetric if for all indices i and j, entry i, j equals entry
j, i.
(a) Find a basis for the vector space of symmetric 2×2 matrices.
(b) Find a basis for the space of symmetric 3×3 matrices.
(c) Find a basis for the space of symmetric n×n matrices.

X 1.36 We can show that every basis for R3 contains the same number of vec-
tors.
(a) Show that no linearly independent subset of R3 contains more than three
vectors.
(b) Show that no spanning subset of R3 contains fewer than three vectors. Hint:
recall how to calculate the span of a set and show that this method cannot yield
all of R3 when we apply it to fewer than three vectors.

1.37 One of the exercises in the Subspaces subsection shows that the set

{

xy
z

 | x+ y+ z = 1 }

is a vector space under these operations.x1y1
z1

+

x2y2
z2

 =

x1 + x2 − 1y1 + y2
z1 + z2

 r

xy
z

 =

rx− r+ 1ry

rz


Find a basis.

III.2 Dimension

The previous subsection defines a basis of a vector space and shows that a space
can have many different bases. So we cannot talk about “the” basis for a vector
space. True, some vector spaces have bases that strike us as more natural than
others, for instance, R2’s basis E2 or P2’s basis 〈1, x, x2〉. But for the vector
space {a2x

2 + a1x+ a0 | 2a2 − a0 = a1 }, no particular basis leaps out at us as
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the natural one. We cannot, in general, associate with a space any single basis
that best describes it.

We can however find something about the bases that is uniquely associated
with the space. This subsection shows that any two bases for a space have the
same number of elements. So with each space we can associate a number, the
number of vectors in any of its bases.

Before we start, we first limit our attention to spaces where at least one basis
has only finitely many members.

2.1 Definition A vector space is finite-dimensional if it has a basis with only
finitely many vectors.

One space that is not finite-dimensional is the set of polynomials with real
coefficients Example 1.11; this space is not spanned by any finite subset since
that would contain a polynomial of largest degree but this space has polynomials
of all degrees. Such spaces are interesting and important but we will focus
in a different direction. From now on we will study only finite-dimensional
vector spaces. In the rest of this book we shall take ‘vector space’ to mean
‘finite-dimensional vector space’.

2.2 Remark One reason for sticking to finite-dimensional spaces is so that the
representation of a vector with respect to a basis is a finitely-tall vector and we
can easily write it. Another reason is that the statement ‘any infinite-dimensional
vector space has a basis’ is equivalent to a statement called the Axiom of Choice
[Blass 1984] and so covering this would move us far past this book’s scope. (A
discussion of the Axiom of Choice is in the Frequently Asked Questions list for
sci.math, and another accessible one is [Rucker].)

To prove the main theorem we shall use a technical result, the Exchange
Lemma. We first illustrate it with an example.

2.3 Example Here is a basis for R3 and a vector given as a linear combination of
members of that basis.

B = 〈

10
0

 ,
11
0

 ,
00
2

〉
12
0

 = (−1) ·

10
0

+ 2

11
0

+ 0 ·

00
2


Two of the basis vectors have non-zero coefficients. Pick one, for instance the
first. Replace it with the vector that we’ve expressed as the combination

B̂ = 〈

12
0

 ,
11
0

 ,
00
2

〉
and the result is another basis for R3.
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2.4 Lemma (Exchange Lemma) Assume that B = 〈~β1, . . . , ~βn〉 is a basis for a
vector space, and that for the vector ~v the relationship ~v = c1~β1 + c2~β2 + · · ·+
cn~βn has ci 6= 0. Then exchanging ~βi for ~v yields another basis for the space.

Proof Call the outcome of the exchange B̂ = 〈~β1, . . . , ~βi−1,~v, ~βi+1, . . . , ~βn〉.
We first show that B̂ is linearly independent. Any relationship d1~β1 + · · ·+

di~v+ · · ·+ dn~βn = ~0 among the members of B̂, after substitution for ~v,

d1~β1 + · · ·+ di · (c1~β1 + · · ·+ ci~βi + · · ·+ cn~βn) + · · ·+ dn~βn = ~0 (∗)

gives a linear relationship among the members of B. The basis B is linearly
independent so the coefficient dici of ~βi is zero. Because we assumed that ci is
nonzero, di = 0. Using this in equation (∗) gives that all of the other d’s are
also zero. Therefore B̂ is linearly independent.

We finish by showing that B̂ has the same span as B. Half of this argument,
that [B̂] ⊆ [B], is easy; we can write any member d1~β1+· · ·+di~v+· · ·+dn~βn of [B̂]
as d1~β1+· · ·+di ·(c1~β1+· · ·+cn~βn)+· · ·+dn~βn, which is a linear combination
of linear combinations of members of B, and hence is in [B]. For the [B] ⊆ [B̂]

half of the argument, recall that if ~v = c1~β1+ · · ·+cn~βn with ci 6= 0 then we can
rearrange the equation to ~βi = (−c1/ci)~β1 + · · ·+ (1/ci)~v+ · · ·+ (−cn/ci)~βn.
Now, consider any member d1~β1 + · · ·+ di~βi + · · ·+ dn~βn of [B], substitute for
~βi its expression as a linear combination of the members of B̂, and recognize,
as in the first half of this argument, that the result is a linear combination of
linear combinations of members of B̂, and hence is in [B̂]. QED

2.5 Theorem In any finite-dimensional vector space, all bases have the same
number of elements.

Proof Fix a vector space with at least one finite basis. Choose, from among
all of this space’s bases, one B = 〈~β1, . . . , ~βn〉 of minimal size. We will show
that any other basis D = 〈~δ1,~δ2, . . .〉 also has the same number of members, n.
Because B has minimal size, D has no fewer than n vectors. We will argue that
it cannot have more than n vectors.

The basis B spans the space and ~δ1 is in the space, so ~δ1 is a nontrivial linear
combination of elements of B. By the Exchange Lemma, we can swap ~δ1 for a
vector from B, resulting in a basis B1, where one element is ~δ1 and all of the
n− 1 other elements are ~β’s.

The prior paragraph forms the basis step for an induction argument. The
inductive step starts with a basis Bk (for 1 6 k < n) containing k members of D
and n− k members of B. We know that D has at least n members so there is a
~δk+1. Represent it as a linear combination of elements of Bk. The key point: in
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that representation, at least one of the nonzero scalars must be associated with
a ~βi or else that representation would be a nontrivial linear relationship among
elements of the linearly independent set D. Exchange ~δk+1 for ~βi to get a new
basis Bk+1 with one ~δ more and one ~β fewer than the previous basis Bk.

Repeat that until no ~β’s remain, so that Bn contains ~δ1, . . . ,~δn. Now, D
cannot have more than these n vectors because any ~δn+1 that remains would be
in the span of Bn (since it is a basis) and hence would be a linear combination
of the other ~δ’s, contradicting that D is linearly independent. QED

2.6 Definition The dimension of a vector space is the number of vectors in any
of its bases.

2.7 Example Any basis for Rn has n vectors since the standard basis En has n
vectors. Thus, this definition of ‘dimension’ generalizes the most familiar use of
term, that Rn is n-dimensional.

2.8 Example The space Pn of polynomials of degree at most n has dimension
n+1. We can show this by exhibiting any basis— 〈1, x, . . . , xn〉 comes to mind—
and counting its members.

2.9 Example The space of functions {a · cos θ+ b · sin θ | a, b ∈ R } of the real
variable θ has dimension 2 since this space has the basis 〈cos θ, sin θ〉.
2.10 Example A trivial space is zero-dimensional since its basis is empty.

Again, although we sometimes say ‘finite-dimensional’ for emphasis, from
now on we take all vector spaces to be finite-dimensional. So in the next result
the word ‘space’ means ‘finite-dimensional vector space’.

2.11 Corollary No linearly independent set can have a size greater than the
dimension of the enclosing space.

Proof The proof of Theorem 2.5 never uses that D spans the space, only that
it is linearly independent. QED

2.12 Example Recall the diagram from Example I.2.19 showing the subspaces
of R3. Each subspace is described with a minimal spanning set, a basis. The
whole space has a basis with three members, the plane subspaces have bases with
two members, the line subspaces have bases with one member, and the trivial
subspace has a basis with zero members. We could not in that section show that
these are R3’s only subspaces. We can show it now. The prior corollary proves
that the only subspaces of R3 are either three-, two-, one-, or zero-dimensional.
There are no subspaces somehow, say, between lines and planes.
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2.13 Corollary Any linearly independent set can be expanded to make a basis.

Proof If a linearly independent set is not already a basis then it must not span
the space. Adding to the set a vector that is not in the span will preserve linear
independence by Lemma II.1.14. Keep adding until the resulting set does span
the space, which the prior corollary shows will happen after only a finite number
of steps. QED

2.14 Corollary Any spanning set can be shrunk to a basis.

Proof Call the spanning set S. If S is empty then it is already a basis (the
space must be a trivial space). If S = {~0 } then it can be shrunk to the empty
basis, thereby making it linearly independent, without changing its span.

Otherwise, S contains a vector ~s1 with ~s1 6= ~0 and we can form a basis
B1 = 〈~s1〉. If [B1] = [S] then we are done. If not then there is a ~s2 ∈ [S] such
that ~s2 6∈ [B1]. Let B2 = 〈~s1, ~s2〉; by Lemma II.1.14 this is linearly independent
so if [B2] = [S] then we are done.

We can repeat this process until the spans are equal, which must happen in
at most finitely many steps. QED

2.15 Corollary In an n-dimensional space, a set composed of n vectors is linearly
independent if and only if it spans the space.

Proof First we will show that a subset with n vectors is linearly independent if
and only if it is a basis. The ‘if’ is trivially true—bases are linearly independent.
‘Only if’ holds because a linearly independent set can be expanded to a basis,
but a basis has n elements, so this expansion is actually the set that we began
with.

To finish, we will show that any subset with n vectors spans the space if and
only if it is a basis. Again, ‘if’ is trivial. ‘Only if’ holds because any spanning
set can be shrunk to a basis, but a basis has n elements and so this shrunken
set is just the one we started with. QED

The main result of this subsection, that all of the bases in a finite-dimensional
vector space have the same number of elements, is the single most important
result in this book. As Example 2.12 shows, it describes what vector spaces and
subspaces there can be.

One immediate consequence brings us back to when we considered the two
things that could be meant by the term ‘minimal spanning set’. At that point we
defined ‘minimal’ as linearly independent but we noted that another reasonable
interpretation of the term is that a spanning set is ‘minimal’ when it has the
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fewest number of elements of any set with the same span. Now that we have
shown that all bases have the same number of elements, we know that the two
senses of ‘minimal’ are equivalent.

Exercises

Assume that all spaces are finite-dimensional unless otherwise stated.

X 2.16 Find a basis for, and the dimension of, P2.

2.17 Find a basis for, and the dimension of, the solution set of this system.

x1 − 4x2 + 3x3 − x4 = 0

2x1 − 8x2 + 6x3 − 2x4 = 0

X 2.18 Find a basis for, and the dimension of, M2×2, the vector space of 2×2 matrices.

2.19 Find the dimension of the vector space of matrices(
a b

c d

)
subject to each condition.

(a) a, b, c, d ∈ R
(b) a− b+ 2c = 0 and d ∈ R
(c) a+ b+ c = 0, a+ b− c = 0, and d ∈ R

X 2.20 Find the dimension of each.
(a) The space of cubic polynomials p(x) such that p(7) = 0
(b) The space of cubic polynomials p(x) such that p(7) = 0 and p(5) = 0
(c) The space of cubic polynomials p(x) such that p(7) = 0, p(5) = 0, and p(3) = 0
(d) The space of cubic polynomials p(x) such that p(7) = 0, p(5) = 0, p(3) = 0,
and p(1) = 0

2.21 What is the dimension of the span of the set {cos2 θ, sin2 θ, cos 2θ, sin 2θ }? This
span is a subspace of the space of all real-valued functions of one real variable.

2.22 Find the dimension of C47, the vector space of 47-tuples of complex numbers.

2.23 What is the dimension of the vector space M3×5 of 3×5 matrices?

X 2.24 Show that this is a basis for R4.

〈


1

0

0

0

 ,

1

1

0

0

 ,

1

1

1

0

 ,

1

1

1

1

〉
(We can use the results of this subsection to simplify this job.)

2.25 Refer to Example 2.12.
(a) Sketch a similar subspace diagram for P2.
(b) Sketch one for M2×2.

X 2.26 Where S is a set, the functions f : S→ R form a vector space under the natural
operations: the sum f+ g is the function given by f+ g (s) = f(s) + g(s) and the
scalar product is r · f (s) = r · f(s). What is the dimension of the space resulting for
each domain?
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(a) S = {1 } (b) S = {1, 2 } (c) S = {1, . . . , n }

2.27 (See Exercise 26.) Prove that this is an infinite-dimensional space: the set of
all functions f : R→ R under the natural operations.

2.28 (See Exercise 26.) What is the dimension of the vector space of functions
f : S→ R, under the natural operations, where the domain S is the empty set?

2.29 Show that any set of four vectors in R2 is linearly dependent.

2.30 Show that 〈~α1, ~α2, ~α3〉 ⊂ R3 is a basis if and only if there is no plane through
the origin containing all three vectors.

2.31 (a) Prove that any subspace of a finite dimensional space has a basis.
(b) Prove that any subspace of a finite dimensional space is finite dimensional.

2.32 Where is the finiteness of B used in Theorem 2.5?

X 2.33 Prove that if U and W are both three-dimensional subspaces of R5 then U∩W
is non-trivial. Generalize.

2.34 A basis for a space consists of elements of that space. So we are naturally led to
how the property ‘is a basis’ interacts with operations ⊆ and ∩ and ∪. (Of course,
a basis is actually a sequence in that it is ordered, but there is a natural extension
of these operations.)
(a) Consider first how bases might be related by ⊆. Assume that U,W are
subspaces of some vector space and that U ⊆W. Can there exist bases BU for U
and BW for W such that BU ⊆ BW? Must such bases exist?

For any basis BU for U, must there be a basis BW for W such that BU ⊆ BW?
For any basis BW for W, must there be a basis BU for U such that BU ⊆ BW?
For any bases BU, BW for U and W, must BU be a subset of BW?

(b) Is the ∩ of bases a basis? For what space?
(c) Is the ∪ of bases a basis? For what space?
(d) What about the complement operation?

(Hint. Test any conjectures against some subspaces of R3.)

X 2.35 Consider how ‘dimension’ interacts with ‘subset’. Assume U and W are both
subspaces of some vector space, and that U ⊆W.
(a) Prove that dim(U) 6 dim(W).
(b) Prove that equality of dimension holds if and only if U =W.
(c) Show that the prior item does not hold if they are infinite-dimensional.

? 2.36 [Wohascum no. 47] For any vector ~v in Rn and any permutation σ of the
numbers 1, 2, . . . , n (that is, σ is a rearrangement of those numbers into a new
order), define σ(~v) to be the vector whose components are vσ(1), vσ(2), . . . , and
vσ(n) (where σ(1) is the first number in the rearrangement, etc.). Now fix ~v and let
V be the span of {σ(~v) | σ permutes 1, . . . , n }. What are the possibilities for the
dimension of V?
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III.3 Vector Spaces and Linear Systems

We will now reconsider linear systems and Gauss’s Method, aided by the tools
and terms of this chapter. We will make three points.

For the first, recall the insight from the Chapter One that Gauss’s Method
works by taking linear combinations of rows— if two matrices are related by
row operations A −→ · · · −→ B then each row of B is a linear combination of
the rows of A. Therefore, the right setting in which to study row operations in
general, and Gauss’s Method in particular, is the following vector space.

3.1 Definition The row space of a matrix is the span of the set of its rows. The
row rank is the dimension of this space, the number of linearly independent
rows.

3.2 Example If

A =

(
2 3

4 6

)
then Rowspace(A) is this subspace of the space of two-component row vectors.

{c1 · (2 3) + c2 · (4 6) | c1, c2 ∈ R }

The second row vector is linearly dependent on the first and so we can simplify
the above description to {c · (2 3) | c ∈ R }.

3.3 Lemma If two matrices A and B are related by a row operation

A
ρi↔ρj−→ B or A

kρi−→ B or A
kρi+ρj−→ B

(for i 6= j and k 6= 0) then their row spaces are equal. Hence, row-equivalent
matrices have the same row space and therefore the same row rank.

Proof Corollary One.III.2.4 shows that when A −→ B then each row of B is a
linear combination of the rows of A. That is, in the above terminology, each row
of B is an element of the row space of A. Then Rowspace(B) ⊆ Rowspace(A)
follows because a member of the set Rowspace(B) is a linear combination of the
rows of B, so it is a combination of combinations of the rows of A, and by the
Linear Combination Lemma is also a member of Rowspace(A).

For the other set containment, recall Lemma One.III.1.5, that row opera-
tions are reversible so A −→ B if and only if B −→ A. Then Rowspace(A) ⊆
Rowspace(B) follows as in the previous paragraph. QED

Of course, Gauss’s Method performs the row operations systematically, with
the goal of echelon form.
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3.4 Lemma The nonzero rows of an echelon form matrix make up a linearly
independent set.

Proof Lemma One.III.2.5 says that no nonzero row of an echelon form matrix
is a linear combination of the other rows. This result just restates that in this
chapter’s terminology. QED

Thus, in the language of this chapter, Gaussian reduction works by eliminating
linear dependences among rows, leaving the span unchanged, until no nontrivial
linear relationships remain among the nonzero rows. In short, Gauss’s Method
produces a basis for the row space.

3.5 Example From any matrix, we can produce a basis for the row space by
performing Gauss’s Method and taking the nonzero rows of the resulting echelon
form matrix. For instance,1 3 1

1 4 1

2 0 5

 −ρ1+ρ2−→
−2ρ1+ρ3

6ρ2+ρ3−→

1 3 1

0 1 0

0 0 3


produces the basis 〈(1 3 1), (0 1 0), (0 0 3)〉 for the row space. This is a basis
for the row space of both the starting and ending matrices, since the two row
spaces are equal.

Using this technique, we can also find bases for spans not directly involving
row vectors.

3.6 Definition The column space of a matrix is the span of the set of its columns.
The column rank is the dimension of the column space, the number of linearly
independent columns.

Our interest in column spaces stems from our study of linear systems. An
example is that this system

c1 + 3c2 + 7c3 = d1
2c1 + 3c2 + 8c3 = d2

c2 + 2c3 = d3
4c1 + 4c3 = d4

has a solution if and only if the vector of d’s is a linear combination of the other
column vectors,

c1


1

2

0

4

+ c2


3

3

1

0

+ c3


7

8

2

4

 =


d1
d2
d3
d4


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meaning that the vector of d’s is in the column space of the matrix of coefficients.

3.7 Example Given this matrix, 
1 3 7

2 3 8

0 1 2

4 0 4


to get a basis for the column space, temporarily turn the columns into rows and
reduce. 1 2 0 4

3 3 1 0

7 8 2 4

 −3ρ1+ρ2−→
−7ρ1+ρ3

−2ρ2+ρ3−→

1 2 0 4

0 −3 1 −12

0 0 0 0


Now turn the rows back to columns.

〈


1

2

0

4

 ,

0

−3

1

−12

〉
The result is a basis for the column space of the given matrix.

3.8 Definition The transpose of a matrix is the result of interchanging its rows
and columns, so that column j of the matrix A is row j of AT and vice versa.

So we can summarize the prior example as “transpose, reduce, and transpose
back.”

We can even, at the price of tolerating the as-yet-vague idea of vector spaces
being “the same,” use Gauss’s Method to find bases for spans in other types of
vector spaces.

3.9 Example To get a basis for the span of {x2 + x4, 2x2 + 3x4,−x2 − 3x4 } in
the space P4, think of these three polynomials as “the same” as the row vectors
(0 0 1 0 1), (0 0 2 0 3), and (0 0 −1 0 −3), apply Gauss’s Method0 0 1 0 1

0 0 2 0 3

0 0 −1 0 −3

 −2ρ1+ρ2−→
ρ1+ρ3

2ρ2+ρ3−→

0 0 1 0 1

0 0 0 0 1

0 0 0 0 0


and translate back to get the basis 〈x2 + x4, x4〉. (As mentioned earlier, we will
make the phrase “the same” precise at the start of the next chapter.)
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Thus, the first point for this subsection is that the tools of this chapter give
us a more conceptual understanding of Gaussian reduction.

For the second point observe that row operations on a matrix can change its
column space. (

1 2

2 4

)
−2ρ1+ρ2−→

(
1 2

0 0

)
The column space of the left-hand matrix contains vectors with a second compo-
nent that is nonzero but the column space of the right-hand matrix contains
only vectors whose second component is zero, so the two spaces are different.
This observation makes next result surprising.

3.10 Lemma Row operations do not change the column rank.

Proof Restated, if A reduces to B then the column rank of B equals the column
rank of A.

This proof will be finished if we show that row operations do not affect linear
relationships among columns, because the column rank is the size of the largest
set of unrelated columns. That is, we will show that a relationship exists among
columns (such as that the fifth column is twice the second plus the fourth) if and
only if that relationship exists after the row operation. But this is exactly the
first theorem of this book, Theorem One.I.1.5: in a relationship among columns,

c1 ·


a1,1
a2,1
...

am,1

+ · · ·+ cn ·


a1,n
a2,n
...

am,n

 =


0

0
...
0


row operations leave unchanged the set of solutions (c1, . . . , cn). QED

Besides the prior result another way to make the point that Gauss’s Method
has something to say about the column space as well as about the row space is
with Gauss-Jordan reduction. Recall that it ends with the reduced echelon form
of a matrix, as here.1 3 1 6

2 6 3 16

1 3 1 6

 −→ · · · −→

1 3 0 2

0 0 1 4

0 0 0 0


Consider the row space and the column space of this result.

The first point made earlier in this subsection says that to get a basis for the
row space we can just collect the rows with leading entries. However, because
this is in reduced echelon form, a basis for the column space is just as easy: collect
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the columns containing the leading entries, 〈~e1,~e2〉. Thus, for a reduced echelon
form matrix we can find bases for the row and column spaces in essentially the
same way, by taking the parts of the matrix, the rows or columns, containing
the leading entries.

3.11 Theorem For any matrix, the row rank and column rank are equal.

Proof Bring the matrix to reduced echelon form. Then the row rank equals
the number of leading entries since that equals the number of nonzero rows.
Then also, the number of leading entries equals the column rank because the
set of columns containing leading entries consists of some of the ~ei’s from a
standard basis, and that set is linearly independent and spans the set of columns.
Hence, in the reduced echelon form matrix, the row rank equals the column
rank, because each equals the number of leading entries.

But Lemma 3.3 and Lemma 3.10 show that the row rank and column rank
are not changed by using row operations to get to reduced echelon form. Thus
the row rank and the column rank of the original matrix are also equal. QED

3.12 Definition The rank of a matrix is its row rank or column rank.

So the second point that we have made in this subsection is that the column
space and row space of a matrix have the same dimension.

Our final point is that the concepts that we’ve seen arising naturally in the
study of vector spaces are exactly the ones that we have studied with linear
systems.

3.13 Theorem For linear systems with n unknowns and with matrix of coefficients
A, the statements
(1) the rank of A is r
(2) the vector space of solutions of the associated homogeneous system has
dimension n− r

are equivalent.

So if the system has at least one particular solution then for the set of solutions,
the number of parameters equals n− r, the number of variables minus the rank
of the matrix of coefficients.

Proof The rank of A is r if and only if Gaussian reduction on A ends with r
nonzero rows. That’s true if and only if echelon form matrices row equivalent
to A have r-many leading variables. That in turn holds if and only if there are
n− r free variables. QED
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3.14 Corollary Where the matrix A is n×n, these statements
(1) the rank of A is n
(2) A is nonsingular
(3) the rows of A form a linearly independent set
(4) the columns of A form a linearly independent set
(5) any linear system whose matrix of coefficients is A has one and only one
solution

are equivalent.

Proof Clearly (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). The last, (4) ⇐⇒ (5), holds
because a set of n column vectors is linearly independent if and only if it is a
basis for Rn, but the system

c1


a1,1
a2,1
...

am,1

+ · · ·+ cn


a1,n
a2,n
...

am,n

 =


d1
d2
...
dm


has a unique solution for all choices of d1, . . . , dn ∈ R if and only if the vectors
of a’s on the left form a basis. QED

3.15 Remark [Munkres] Sometimes the results of this subsection are mistakenly
remembered to say that the general solution of an n unknowns system of
m equations uses n−m parameters. The number of equations is not the relevant
figure, rather, what matters is the number of independent equations, the number
of equations in a maximal independent set. Where there are r independent
equations, the general solution involves n− r parameters.

Exercises

3.16 Transpose each.

(a)
(
2 1

3 1

)
(b)

(
2 1

1 3

)
(c)

(
1 4 3

6 7 8

)
(d)

00
0


(e) (−1 −2)

X 3.17 Decide if the vector is in the row space of the matrix.

(a)
(
2 1

3 1

)
, (1 0) (b)

 0 1 3

−1 0 1

−1 2 7

, (1 1 1)

X 3.18 Decide if the vector is in the column space.

(a)
(
1 1

1 1

)
,
(
1

3

)
(b)

1 3 1

2 0 4

1 −3 −3

,

10
0


X 3.19 Decide if the vector is in the column space of the matrix.
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(a)
(
2 1

2 5

)
,
(
1

−3

)
(b)

(
4 −8

2 −4

)
,
(
0

1

)
(c)

 1 −1 1

1 1 −1

−1 −1 1

,

20
0


X 3.20 Find a basis for the row space of this matrix.

2 0 3 4

0 1 1 −1

3 1 0 2

1 0 −4 −1


X 3.21 Find the rank of each matrix.

(a)

2 1 3

1 −1 2

1 0 3

 (b)

 1 −1 2

3 −3 6

−2 2 −4

 (c)

1 3 2

5 1 1

6 4 3


(d)

0 0 0

0 0 0

0 0 0


X 3.22 Find a basis for the span of each set.

(a) {(1 3), (−1 3), (1 4), (2 1) } ⊆M1×2

(b) {

12
1

 ,
 3

1

−1

 ,
 1

−3

−3

 } ⊆ R3

(c) {1+ x, 1− x2, 3+ 2x− x2 } ⊆ P3

(d) {

(
1 0 1

3 1 −1

)
,

(
1 0 3

2 1 4

)
,

(
−1 0 −5

−1 −1 −9

)
} ⊆M2×3

3.23 Which matrices have rank zero? Rank one?
X 3.24 Given a, b, c ∈ R, what choice of d will cause this matrix to have the rank of

one? (
a b

c d

)
3.25 Find the column rank of this matrix.(

1 3 −1 5 0 4

2 0 1 0 4 1

)
3.26 Show that a linear system with at least one solution has at most one solution if
and only if the matrix of coefficients has rank equal to the number of its columns.

X 3.27 If a matrix is 5×9, which set must be dependent, its set of rows or its set of
columns?

3.28 Give an example to show that, despite that they have the same dimension, the
row space and column space of a matrix need not be equal. Are they ever equal?

3.29 Show that the set {(1,−1, 2,−3), (1, 1, 2, 0), (3,−1, 6,−6) } does not have the
same span as {(1, 0, 1, 0), (0, 2, 0, 3) }. What, by the way, is the vector space?

X 3.30 Show that this set of column vectors

{

d1d2
d3

 | there are x, y, and z such that:
3x + 2y + 4z = d1
x − z = d2
2x + 2y + 5z = d3

}

is a subspace of R3. Find a basis.
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3.31 Show that the transpose operation is linear:
(rA+ sB)T = rAT + sBT

for r, s ∈ R and A,B ∈Mm×n.
X 3.32 In this subsection we have shown that Gaussian reduction finds a basis for the

row space.
(a) Show that this basis is not unique—different reductions may yield different
bases.
(b) Produce matrices with equal row spaces but unequal numbers of rows.
(c) Prove that two matrices have equal row spaces if and only if after Gauss-Jordan
reduction they have the same nonzero rows.

3.33 Why is there not a problem with Remark 3.15 in the case that r is bigger than
n?

3.34 Show that the row rank of an m×n matrix is at most m. Is there a better
bound?

X 3.35 Show that the rank of a matrix equals the rank of its transpose.
3.36 True or false: the column space of a matrix equals the row space of its transpose.

X 3.37 We have seen that a row operation may change the column space. Must it?
3.38 Prove that a linear system has a solution if and only if that system’s matrix of
coefficients has the same rank as its augmented matrix.

3.39 An m×n matrix has full row rank if its row rank is m, and it has full column
rank if its column rank is n.
(a) Show that a matrix can have both full row rank and full column rank only if
it is square.
(b) Prove that the linear system with matrix of coefficients A has a solution for
any d1, . . . , dn’s on the right side if and only if A has full row rank.
(c) Prove that a homogeneous system has a unique solution if and only if its
matrix of coefficients A has full column rank.
(d) Prove that the statement “if a system with matrix of coefficients A has any
solution then it has a unique solution” holds if and only if A has full column
rank.

3.40 How would the conclusion of Lemma 3.3 change if Gauss’s Method were changed
to allow multiplying a row by zero?

X 3.41 What is the relationship between rank(A) and rank(−A)? Between rank(A)
and rank(kA)? What, if any, is the relationship between rank(A), rank(B), and
rank(A+ B)?

III.4 Combining Subspaces

This subsection is optional. It is required only for the last sections of
Chapter Three and Chapter Five and for occasional exercises. You can
pass it over without loss of continuity.
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One way to understand something is to see how to build it from component
parts. For instance, we sometimes think of R3 put together from the x-axis,
the y-axis, and z-axis. In this subsection we will describe how to decompose a
vector space into a combination of some of its subspaces. In developing this idea
of subspace combination, we will keep the R3 example in mind as a prototype.

Subspaces are subsets and sets combine via union. But taking the combination
operation for subspaces to be the simple set union operation isn’t what we want.
For instance, the union of the x-axis, the y-axis, and z-axis is not all of R3. In
fact this union is not a subspace because it is not closed under addition: this
vector 10

0

+

01
0

+

00
1

 =

11
1


is in none of the three axes and hence is not in the union. Therefore to combine
subspaces, in addition to the members of those subspaces, we must at least also
include all of their linear combinations.

4.1 Definition Where W1, . . . ,Wk are subspaces of a vector space, their sum is
the span of their union W1 +W2 + · · ·+Wk = [W1 ∪W2 ∪ · · ·Wk].

Writing ‘+’ fits with the conventional practice of using this symbol for a natural
accumulation operation.

4.2 Example Our R3 prototype works with this. Any vector ~w ∈ R3 is a linear
combination c1~v1 + c2~v2 + c3~v3 where ~v1 is a member of the x-axis, etc., in this
way w1w2

w3

 = 1 ·

w10
0

+ 1 ·

 0

w2
0

+ 1 ·

 0

0

w3


and so x-axis+ y-axis+ z-axis = R3.

4.3 Example A sum of subspaces can be less than the entire space. Inside of P4,
let L be the subspace of linear polynomials {a+ bx | a, b ∈ R } and let C be the
subspace of purely-cubic polynomials {cx3 | c ∈ R }. Then L+ C is not all of P4.
Instead, L+ C = {a+ bx+ cx3 | a, b, c ∈ R }.

4.4 Example A space can be described as a combination of subspaces in more
than one way. Besides the decomposition R3 = x-axis+ y-axis+ z-axis, we can
also write R3 = xy-plane+ yz-plane. To check this, note that any ~w ∈ R3 can
be written as a linear combination of a member of the xy-plane and a member
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of the yz-plane; here are two such combinations.w1w2
w3

 = 1 ·

w1w2
0

+ 1 ·

 0

0

w3


w1w2
w3

 = 1 ·

 w1
w2/2

0

+ 1 ·

 0

w2/2

w3


The above definition gives one way in which we can think of a space as a

combination of some of its parts. However, the prior example shows that there is
at least one interesting property of our benchmark model that is not captured by
the definition of the sum of subspaces. In the familiar decomposition of R3, we
often speak of a vector’s ‘x part’ or ‘y part’ or ‘z part’. That is, in our prototype
each vector has a unique decomposition into pieces from the parts making up
the whole space. But in the decomposition used in Example 4.4, we cannot refer
to the “xy part” of a vector— these three sums12

3

 =

12
0

+

00
3

 =

10
0

+

02
3

 =

11
0

+

01
3


all describe the vector as comprised of something from the first plane plus
something from the second plane, but the “xy part” is different in each.

That is, when we consider how R3 is put together from the three axes we
might mean “in such a way that every vector has at least one decomposition,”
which gives the definition above. But if we take it to mean “in such a way
that every vector has one and only one decomposition” then we need another
condition on combinations. To see what this condition is, recall that vectors are
uniquely represented in terms of a basis. We can use this to break a space into a
sum of subspaces such that any vector in the space breaks uniquely into a sum
of members of those subspaces.

4.5 Example Consider R3 with its standard basis E3 = 〈~e1,~e2,~e3〉. The subspace
with the basis B1 = 〈~e1〉 is the x-axis, the subspace with the basis B2 = 〈~e2〉 is
the y-axis, and the subspace with the basis B3 = 〈~e3〉 is the z-axis. The fact
that any member of R3 is expressible as a sum of vectors from these subspacesxy

z

 =

x0
0

+

0y
0

+

00
z


reflects the fact that E3 spans the space—this equationxy

z

 = c1

10
0

+ c2

01
0

+ c3

00
1


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has a solution for any x, y, z ∈ R. And the fact that each such expression is
unique reflects that fact that E3 is linearly independent, so any equation like
the one above has a unique solution.

4.6 Example We don’t have to take the basis vectors one at a time, we can
conglomerate them into larger sequences. Consider again the space R3 and the
vectors from the standard basis E3. The subspace with the basis B1 = 〈~e1,~e3〉
is the xz-plane. The subspace with the basis B2 = 〈~e2〉 is the y-axis. As in the
prior example, the fact that any member of the space is a sum of members of
the two subspaces in one and only one wayxy

z

 =

x0
z

+

0y
0


is a reflection of the fact that these vectors form a basis— this equationxy

z

 = (c1

10
0

+ c3

00
1

) + c2

01
0


has one and only one solution for any x, y, z ∈ R.

4.7 Definition The concatenation of the sequences B1 = 〈~β1,1, . . . , ~β1,n1〉, . . . ,
Bk = 〈~βk,1, . . . , ~βk,nk〉 adjoins them into a single sequence.

B1
_
B2

_ · · ·_Bk = 〈~β1,1, . . . , ~β1,n1 , ~β2,1, . . . , ~βk,nk〉

4.8 Lemma Let V be a vector space that is the sum of some of its subspaces
V =W1+ · · ·+Wk. Let B1, . . . , Bk be bases for these subspaces. The following
are equivalent.
(1) The expression of any ~v ∈ V as a combination ~v = ~w1 + · · · + ~wk with
~wi ∈Wi is unique.

(2) The concatenation B1
_ · · ·_Bk is a basis for V.

(3) Among nonzero vectors from different Wi’s every linear relationship is
trivial.

Proof We will show that (1) =⇒ (2), that (2) =⇒ (3), and finally that
(3) =⇒ (1). For these arguments, observe that we can pass from a combination
of ~w’s to a combination of ~β’s

d1~w1 + · · ·+ dk~wk = d1(c1,1~β1,1 + · · ·+ c1,n1~β1,n1)
+ · · ·+ dk(ck,1~βk,1 + · · ·+ ck,nk~βk,nk)

= d1c1,1 · ~β1,1 + · · ·+ dkck,nk · ~βk,nk (∗)
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and vice versa (we can move from the bottom to the top by taking each di to
be 1).

For (1) =⇒ (2), assume that all decompositions are unique. We will show
that B1

_ · · ·_Bk spans the space and is linearly independent. It spans the
space because the assumption that V = W1 + · · · +Wk means that every ~v

can be expressed as ~v = ~w1 + · · ·+ ~wk, which translates by equation (∗) to an
expression of ~v as a linear combination of the ~β’s from the concatenation. For
linear independence, consider this linear relationship.

~0 = c1,1~β1,1 + · · ·+ ck,nk~βk,nk

Regroup as in (∗) (that is, move from bottom to top) to get the decomposition
~0 = ~w1 + · · · + ~wk. Because the zero vector obviously has the decomposition
~0 = ~0+ · · ·+~0, the assumption that decompositions are unique shows that each
~wi is the zero vector. This means that ci,1~βi,1 + · · ·+ ci,ni~βi,ni = ~0, and since
each Bi is a basis we have the desired conclusion that all of the c’s are zero.

For (2) =⇒ (3) assume that the concatenation of the bases is a basis for the
entire space. Consider a linear relationship among nonzero vectors from different
Wi’s. This might or might not involve a vector from W1, or one from W2, etc.,
so we write it ~0 = · · ·+ di~wi + · · · . As in equation (∗) expand the vector.

~0 = · · ·+ di(ci,1~βi,1 + · · ·+ ci,ni~βi,ni) + · · ·
= · · ·+ dici,1 · ~βi,1 + · · ·+ dici,ni · ~βi,ni + · · ·

The linear independence of B1
_ · · ·_Bk gives that each coefficient dici,j is zero.

Since ~wi is nonzero vector, at least one of the ci,j’s is not zero, and thus di is
zero. This holds for each di, and therefore the linear relationship is trivial.

Finally, for (3) =⇒ (1), assume that among nonzero vectors from different
Wi’s any linear relationship is trivial. Consider two decompositions of a vector
~v = · · ·+ ~wi+ · · · and ~v = · · ·+~uj+ · · · where ~wi ∈Wi and ~uj ∈Wj. Subtract
one from the other to get a linear relationship, something like this (if there is no
~ui or ~wj then leave those out).

~0 = · · ·+ (~wi − ~ui) + · · ·+ (~wj − ~uj) + · · ·

The case assumption that statement (3) holds implies that the terms each equal
the zero vector ~wi − ~ui = ~0. Hence decompositions are unique. QED

4.9 Definition A collection of subspaces {W1, . . . ,Wk } is independent if no
nonzero vector from any Wi is a linear combination of vectors from the other
subspaces W1, . . . ,Wi−1,Wi+1, . . . ,Wk.
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4.10 Definition A vector space V is the direct sum (or internal direct sum)
of its subspaces W1, . . . ,Wk if V = W1 +W2 + · · · +Wk and the collection
{W1, . . . ,Wk } is independent. We write V =W1 ⊕W2 ⊕ · · · ⊕Wk.

4.11 Example Our prototype works: R3 = x-axis⊕ y-axis⊕ z-axis.
4.12 Example The space of 2×2 matrices is this direct sum.

{

(
a 0

0 d

)
| a, d ∈ R } ⊕ {

(
0 b

0 0

)
| b ∈ R } ⊕ {

(
0 0

c 0

)
| c ∈ R }

It is the direct sum of subspaces in many other ways as well; direct sum
decompositions are not unique.

4.13 Corollary The dimension of a direct sum is the sum of the dimensions of its
summands.

Proof In Lemma 4.8, the number of basis vectors in the concatenation equals
the sum of the number of vectors in the sub-bases. QED

The special case of two subspaces is worth its own mention.

4.14 Definition When a vector space is the direct sum of two of its subspaces
then they are complements.

4.15 Lemma A vector space V is the direct sum of two of its subspaces W1 and
W2 if and only if it is the sum of the two V =W1 +W2 and their intersection
is trivial W1 ∩W2 = {~0 }.

Proof Suppose first that V = W1 ⊕W2. By definition, V is the sum of the
two V =W1 +W2. To show that their intersection is trivial let ~v be a vector
from W1 ∩W2 and consider the equation ~v = ~v. On that equation’s left side is
a member of W1 and on the right is a member of W2, which we can think of as
a linear combination of members of W2. But the two spaces are independent so
the only way that a member of W1 can be a linear combination of vectors from
W2 is if that member is the zero vector ~v = ~0.

For the other direction, suppose that V is the sum of two spaces with a
trivial intersection. To show that V is a direct sum of the two we need only
show that the spaces are independent—that no nonzero member of the first is
expressible as a linear combination of members of the second, and vice versa.
This holds because any relationship ~w1 = c1~w2,1+ · · ·+ ck~w2,k (with ~w1 ∈W1
and ~w2,j ∈W2 for all j) shows that the vector on the left is also in W2, since
the right side is a combination of members of W2. The intersection of these two
spaces is trivial, so ~w1 = ~0. The same argument works for any ~w2. QED
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4.16 Example In R2 the x-axis and the y-axis are complements, that is, R2 =

x-axis⊕y-axis. A space can have more than one pair of complementary subspaces;
another pair for R2 are the subspaces consisting of the lines y = x and y = 2x.

4.17 Example In the space F = {a cos θ+ b sin θ | a, b ∈ R }, the subspaces W1 =
{a cos θ | a ∈ R } and W2 = {b sin θ | b ∈ R } are complements. The prior exam-
ple noted that a space can be decomposed into more than one pair of comple-
ments. In addition note that F can has more than one pair of complementary
subspaces where the first in the pair is W1—another complement of W1 is
W3 = {b sin θ+ b cos θ | b ∈ R }.

4.18 Example In R3, the xy-plane and the yz-planes are not complements, which
is the point of the discussion following Example 4.4. One complement of the
xy-plane is the z-axis.

Here is a natural question that arises from Lemma 4.15: for k > 2 is the
simple sum V =W1 + · · ·+Wk also a direct sum if and only if the intersection
of the subspaces is trivial?

4.19 Example If there are more than two subspaces then having a trivial inter-
section is not enough to guarantee unique decomposition (i.e., is not enough to
ensure that the spaces are independent). In R3, let W1 be the x-axis, let W2 be
the y-axis, and let W3 be this.

W3 = {

qq
r

 | q, r ∈ R }

The check that R3 =W1 +W2 +W3 is easy. The intersection W1 ∩W2 ∩W3 is
trivial, but decompositions aren’t unique.xy

z

 =

00
0

+

 0

y− x

0

+

xx
z

 =

x− y0
0

+

00
0

+

yy
z


(This example also shows that this requirement is also not enough: that all
pairwise intersections of the subspaces be trivial. See Exercise 30.)

In this subsection we have seen two ways to regard a space as built up from
component parts. Both are useful; in particular we will use the direct sum
definition at the end of the Chapter Five.

Exercises

X 4.20 Decide if R2 is the direct sum of each W1 and W2.

(a) W1 = {

(
x

0

)
| x ∈ R }, W2 = {

(
x

x

)
| x ∈ R }
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(b) W1 = {

(
s

s

)
| s ∈ R }, W2 = {

(
s

1.1s

)
| s ∈ R }

(c) W1 = R2, W2 = {~0 }

(d) W1 =W2 = {

(
t

t

)
| t ∈ R }

(e) W1 = {

(
1

0

)
+

(
x

0

)
| x ∈ R }, W2 = {

(
−1

0

)
+

(
0

y

)
| y ∈ R }

X 4.21 Show that R3 is the direct sum of the xy-plane with each of these.
(a) the z-axis
(b) the line

{

zz
z

 | z ∈ R }

4.22 Is P2 the direct sum of {a+ bx2 | a, b ∈ R } and {cx | c ∈ R }?
X 4.23 In Pn, the even polynomials are the members of this set

E = {p ∈ Pn | p(−x) = p(x) for all x }
and the odd polynomials are the members of this set.

O = {p ∈ Pn | p(−x) = −p(x) for all x }
Show that these are complementary subspaces.

4.24 Which of these subspaces of R3
W1: the x-axis, W2: the y-axis, W3: the z-axis,
W4: the plane x+ y+ z = 0, W5: the yz-plane

can be combined to
(a) sum to R3? (b) direct sum to R3?

X 4.25 Show that Pn = {a0 | a0 ∈ R }⊕ . . .⊕ {anx
n | an ∈ R }.

4.26 What is W1 +W2 if W1 ⊆W2?
4.27 Does Example 4.5 generalize? That is, is this true or false: if a vector space V
has a basis 〈~β1, . . . , ~βn〉 then it is the direct sum of the spans of the one-dimensional
subspaces V = [{~β1 }]⊕ . . .⊕ [{~βn }]?

4.28 Can R4 be decomposed as a direct sum in two different ways? Can R1?
4.29 This exercise makes the notation of writing ‘+’ between sets more natural.
Prove that, where W1, . . . ,Wk are subspaces of a vector space,

W1 + · · ·+Wk = { ~w1 + ~w2 + · · ·+ ~wk | ~w1 ∈W1, . . . , ~wk ∈Wk },

and so the sum of subspaces is the subspace of all sums.
4.30 (Refer to Example 4.19. This exercise shows that the requirement that pairwise
intersections be trivial is genuinely stronger than the requirement only that the
intersection of all of the subspaces be trivial.) Give a vector space and three
subspaces W1, W2, and W3 such that the space is the sum of the subspaces,
the intersection of all three subspaces W1 ∩W2 ∩W3 is trivial, but the pairwise
intersections W1 ∩W2, W1 ∩W3, and W2 ∩W3 are nontrivial.

X 4.31 Prove that if V =W1 ⊕ . . .⊕Wk then Wi ∩Wj is trivial whenever i 6= j. This
shows that the first half of the proof of Lemma 4.15 extends to the case of more
than two subspaces. (Example 4.19 shows that this implication does not reverse;
the other half does not extend.)
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4.32 Recall that no linearly independent set contains the zero vector. Can an
independent set of subspaces contain the trivial subspace?

X 4.33 Does every subspace have a complement?
X 4.34 Let W1,W2 be subspaces of a vector space.

(a) Assume that the set S1 spans W1, and that the set S2 spans W2. Can S1 ∪ S2
span W1 +W2? Must it?
(b) Assume that S1 is a linearly independent subset ofW1 and that S2 is a linearly
independent subset of W2. Can S1 ∪ S2 be a linearly independent subset of
W1 +W2? Must it?

4.35 When we decompose a vector space as a direct sum, the dimensions of the
subspaces add to the dimension of the space. The situation with a space that is
given as the sum of its subspaces is not as simple. This exercise considers the
two-subspace special case.
(a) For these subspaces of M2×2 find W1 ∩W2, dim(W1 ∩W2), W1 +W2, and
dim(W1 +W2).

W1 = {

(
0 0

c d

)
| c, d ∈ R } W2 = {

(
0 b

c 0

)
| b, c ∈ R }

(b) Suppose that U and W are subspaces of a vector space. Suppose that the
sequence 〈~β1, . . . , ~βk〉 is a basis for U ∩ W. Finally, suppose that the prior
sequence has been expanded to give a sequence 〈~µ1, . . . ,~µj, ~β1, . . . , ~βk〉 that is a
basis for U, and a sequence 〈~β1, . . . , ~βk, ~ω1, . . . , ~ωp〉 that is a basis for W. Prove
that this sequence

〈~µ1, . . . ,~µj, ~β1, . . . , ~βk, ~ω1, . . . , ~ωp〉
is a basis for the sum U+W.
(c) Conclude that dim(U+W) = dim(U) + dim(W) − dim(U ∩W).
(d) Let W1 and W2 be eight-dimensional subspaces of a ten-dimensional space.
List all values possible for dim(W1 ∩W2).

4.36 Let V = W1 ⊕ · · · ⊕Wk and for each index i suppose that Si is a linearly
independent subset of Wi. Prove that the union of the Si’s is linearly independent.

4.37 A matrix is symmetric if for each pair of indices i and j, the i, j entry equals
the j, i entry. A matrix is antisymmetric if each i, j entry is the negative of the j, i
entry.
(a) Give a symmetric 2×2 matrix and an antisymmetric 2×2 matrix. (Remark.
For the second one, be careful about the entries on the diagonal.)
(b) What is the relationship between a square symmetric matrix and its transpose?
Between a square antisymmetric matrix and its transpose?
(c) Show that Mn×n is the direct sum of the space of symmetric matrices and the
space of antisymmetric matrices.

4.38 Let W1,W2,W3 be subspaces of a vector space. Prove that (W1 ∩W2) + (W1 ∩
W3) ⊆W1 ∩ (W2 +W3). Does the inclusion reverse?

4.39 The example of the x-axis and the y-axis in R2 shows that W1 ⊕W2 = V does
not imply that W1 ∪W2 = V. Can W1 ⊕W2 = V and W1 ∪W2 = V happen?

X 4.40 Consider Corollary 4.13. Does it work both ways— that is, supposing that V =

W1+· · ·+Wk, is V =W1⊕· · ·⊕Wk if and only if dim(V) = dim(W1)+· · ·+dim(Wk)?
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4.41 We know that if V = W1 ⊕W2 then there is a basis for V that splits into a
basis for W1 and a basis for W2. Can we make the stronger statement that every
basis for V splits into a basis for W1 and a basis for W2?

4.42 We can ask about the algebra of the ‘+’ operation.
(a) Is it commutative; is W1 +W2 =W2 +W1?
(b) Is it associative; is (W1 +W2) +W3 =W1 + (W2 +W3)?
(c) Let W be a subspace of some vector space. Show that W +W =W.
(d) Must there be an identity element, a subspace I such that I+W =W+ I =W

for all subspaces W?
(e) Does left-cancellation hold: if W1 +W2 = W1 +W3 then W2 = W3? Right
cancellation?

4.43 Consider the algebraic properties of the direct sum operation.
(a) Does direct sum commute: does V =W1 ⊕W2 imply that V =W2 ⊕W1?
(b) Prove that direct sum is associative: (W1 ⊕W2)⊕W3 =W1 ⊕ (W2 ⊕W3).
(c) Show that R3 is the direct sum of the three axes (the relevance here is that by
the previous item, we needn’t specify which two of the three axes are combined
first).
(d) Does the direct sum operation left-cancel: does W1 ⊕W2 =W1 ⊕W3 imply
W2 =W3? Does it right-cancel?
(e) There is an identity element with respect to this operation. Find it.
(f) Do some, or all, subspaces have inverses with respect to this operation: is
there a subspace W of some vector space such that there is a subspace U with
the property that U⊕W equals the identity element from the prior item?
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Fields

Computations involving only integers or only rational numbers are much easier
than those with real numbers. Could other algebraic structures, such as the
integers or the rationals, work in the place of R in the definition of a vector
space?

If we take “work” to mean that the results of this chapter remain true then
there is a natural list of conditions that a structure (that is, number system)
must have in order to work in the place of R. A field is a set F with operations
‘+’ and ‘·’ such that
(1) for any a, b ∈ F the result of a+ b is in F, and a+ b = b+ a, and if c ∈ F

then a+ (b+ c) = (a+ b) + c

(2) for any a, b ∈ F the result of a ·b is in F, and a ·b = b ·a, and if c ∈ F then
a · (b · c) = (a · b) · c

(3) if a, b, c ∈ F then a · (b+ c) = a · b+ a · c
(4) there is an element 0 ∈ F such that if a ∈ F then a + 0 = a, and for each

a ∈ F there is an element −a ∈ F such that (−a) + a = 0

(5) there is an element 1 ∈ F such that if a ∈ F then a · 1 = a, and for each
element a 6= 0 of F there is an element a−1 ∈ F such that a−1 · a = 1.

For example, the algebraic structure consisting of the set of real numbers
along with its usual addition and multiplication operation is a field. Another
field is the set of rational numbers with its usual addition and multiplication
operations. An example of an algebraic structure that is not a field is the integers,
because it fails the final condition.

Some examples are more surprising. The set B = {0, 1 } under these opera-
tions:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

is a field; see Exercise 4.
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We could in this book develop Linear Algebra as the theory of vector spaces
with scalars from an arbitrary field. In that case, almost all of the statements here
would carry over by replacing ‘R’ with ‘F’, that is, by taking coefficients, vector
entries, and matrix entries to be elements of F (the exceptions are statements
involving distances or angles, which would need additional development). Here
are some examples; each applies to a vector space V over a field F.

∗ For any ~v ∈ V and a ∈ F, (i) 0 ·~v = ~0, (ii) −1 ·~v+~v = ~0, and (iii) a ·~0 = ~0.

∗ The span, the set of linear combinations, of a subset of V is a subspace of
V.

∗ Any subset of a linearly independent set is also linearly independent.

∗ In a finite-dimensional vector space, any two bases have the same number
of elements.

(Even statements that don’t explicitly mention F use field properties in their
proof.)

We will not develop vector spaces in this more general setting because the
additional abstraction can be a distraction. The ideas we want to bring out
already appear when we stick to the reals.

The exception is Chapter Five. There we must factor polynomials, so we
will switch to considering vector spaces over the field of complex numbers.

Exercises

1 Check that the real numbers form a field.
2 Prove that these are fields.

(a) The rational numbers Q (b) The complex numbers C
3 Give an example that shows that the integer number system is not a field.
4 Check that the set B = {0, 1 } is a field under the operations listed above,
5 Give suitable operations to make the set {0, 1, 2 } a field.
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Crystals

Everyone has noticed that table salt comes in little cubes.

This orderly outside arises from an orderly inside—the way the atoms lie is
also cubical, these cubes stack in neat rows and columns, and the salt faces tend
to be just an outer layer of cubes. One cube of atoms is shown below. Salt is
sodium chloride and the small spheres shown are sodium while the big ones are
chloride. To simplify the view, it only shows the sodiums and chlorides on the
front, top, and right.

The specks of salt that we see above have many repetitions of this fundamental
unit. A solid, such as table salt, with a regular internal structure is a crystal.

We can restrict our attention to the front face. There we have a square
repeated many times giving a lattice of atoms.
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The distance along the sides of each square cell is about 3.34 Ångstroms (an
Ångstrom is 10−10 meters). When we want to refer to atoms in the lattice that
number is unwieldy, and so we take the square’s side length as a unit. That is,
we naturally adopt this basis.

〈

(
3.34

0

)
,

(
0

3.34

)
〉

Now we can describe, say, the atom in the upper right of the lattice picture
above as 3~β1 + 2~β2, instead of 10.02 Ångstroms over and 6.68 up.

Another crystal from everyday experience is pencil lead. It is graphite,
formed from carbon atoms arranged in this shape.

This is a single plane of graphite, called graphene. A piece of graphite consists of
many of these planes, layered. The chemical bonds between the planes are much
weaker than the bonds inside the planes, which explains why pencils write— the
graphite can be sheared so that the planes slide off and are left on the paper.

We can get a convenient unit of length by decomposing the hexagonal ring
into three regions that are rotations of this unit cell.

The vectors that form the sides of that unit cell make a convenient basis. The
distance along the bottom and slant is 1.42 Ångstroms, so this

〈

(
1.42

0

)
,

(
1.23

.71

)
〉
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is a good basis.
Another familiar crystal formed from carbon is diamond. Like table salt it

is built from cubes but the structure inside each cube is more complicated. In
addition to carbons at each corner,

there are carbons in the middle of each face.

(To show the new face carbons clearly, the corner carbons are reduced to dots.)
There are also four more carbons inside the cube, two that are a quarter of the
way up from the bottom and two that are a quarter of the way down from the
top.

(As before, carbons shown earlier are reduced here to dots.) The distance along
any edge of the cube is 2.18 Ångstroms. Thus, a natural basis for describing the
locations of the carbons and the bonds between them, is this.

〈

2.180
0

 ,
 0

2.18

0

 ,
 0

0

2.18

〉
The examples here show that the structures of crystals is complicated enough

to need some organized system to give the locations of the atoms and how they
are chemically bound. One tool for that organization is a convenient basis. This
application of bases is simple but it shows a science context where the idea arises
naturally.

Exercises

1 How many fundamental regions are there in one face of a speck of salt? (With a
ruler, we can estimate that face is a square that is 0.1 cm on a side.)
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2 In the graphite picture, imagine that we are interested in a point 5.67 Ångstroms
over and 3.14 Ångstroms up from the origin.
(a) Express that point in terms of the basis given for graphite.
(b) How many hexagonal shapes away is this point from the origin?
(c) Express that point in terms of a second basis, where the first basis vector is
the same, but the second is perpendicular to the first (going up the plane) and
of the same length.

3 Give the locations of the atoms in the diamond cube both in terms of the basis,
and in Ångstroms.

4 This illustrates how we could compute the dimensions of a unit cell from the
shape in which a substance crystallizes ([Ebbing], p. 462).
(a) Recall that there are 6.022× 1023 atoms in a mole (this is Avogadro’s number).
From that, and the fact that platinum has a mass of 195.08 grams per mole,
calculate the mass of each atom.
(b) Platinum crystallizes in a face-centered cubic lattice with atoms at each lattice
point, that is, it looks like the middle picture given above for the diamond crystal.
Find the number of platinum’s per unit cell (hint: sum the fractions of platinum’s
that are inside of a single cell).
(c) From that, find the mass of a unit cell.
(d) Platinum crystal has a density of 21.45 grams per cubic centimeter. From
this, and the mass of a unit cell, calculate the volume of a unit cell.
(e) Find the length of each edge.
(f) Describe a natural three-dimensional basis.
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Voting Paradoxes

Imagine that a Political Science class studying the American presidential process
holds a mock election. The 29 class members rank the Democratic Party,
Republican Party, and Third Party nominees, from most preferred to least
preferred (> means ‘is preferred to’).

preference order
number with
that preference

Democrat > Republican > Third
Democrat > Third > Republican
Republican > Democrat > Third
Republican > Third > Democrat
Third > Democrat > Republican
Third > Republican > Democrat

5

4

2

8

8

2

What is the preference of the group as a whole?
Overall, the group prefers the Democrat to the Republican by five votes;

seventeen voters ranked the Democrat above the Republican versus twelve the
other way. And the group prefers the Republican to the Third’s nominee, fifteen
to fourteen. But, strangely enough, the group also prefers the Third to the
Democrat, eighteen to eleven.

Democrat

Third Republican

7 voters

1 voter

5 voters

This is a voting paradox , specifically, a majority cycle.
Mathematicians study voting paradoxes in part because of their implications

for practical politics. For instance, the instructor can manipulate this class into
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choosing the Democrat as the overall winner by first asking for a vote between
the Republican and the Third, and then asking for a vote between the winner
of that contest, who will be the Republican, and the Democrat. By similar
manipulations the instructor can make any of the other two candidates come out
as the winner. (We will stick to three-candidate elections but the same thing
happens in larger elections.)

Mathematicians also study voting paradoxes simply because they are inter-
esting. One interesting aspect is that the group’s overall majority cycle occurs
despite that each single voter’s preference list is rational , in a straight-line order.
That is, the majority cycle seems to arise in the aggregate without being present
in the components of that aggregate, the preference lists. However we can use
linear algebra to argue that a tendency toward cyclic preference is actually
present in each voter’s list and that it surfaces when there is more adding of the
tendency than canceling.

For this, abbreviating the choices as D, R, and T , we can describe how a
voter with preference order D > R > T contributes to the above cycle.

D

T R

−1 voter

1 voter

1 voter

(The negative sign is here because the arrow describes T as preferred to D, but
this voter likes them the other way.) The descriptions for the other preference
lists are in the table on page 153.

Now, to conduct the election we linearly combine these descriptions; for
instance, the Political Science mock election

5 ·

D

T R

−1

1

1

+ 4 ·

D

T R

−1

−1

1

+ · · ·+ 2 ·

D

T R

1

−1

−1

yields the circular group preference shown earlier.
Of course, taking linear combinations is linear algebra. The graphical cycle

notation is suggestive but inconvenient so we use column vectors by starting at
the D and taking the numbers from the cycle in counterclockwise order. Thus,
we represent the mock election and a single D > R > T vote in this way.71

5

 and

−1

1

1


We will decompose vote vectors into two parts, one cyclic and the other

acyclic. For the first part, we say that a vector is purely cyclic if it is in this
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subspace of R3.

C = {

kk
k

 | k ∈ R } = {k ·

11
1

 | k ∈ R }

For the second part, consider the set of vectors that are perpendicular to all of
the vectors in C. Exercise 6 shows that this is a subspace

C⊥ = {

c1c2
c3

 |

c1c2
c3

 •

kk
k

 = 0 for all k ∈ R }

= {

c1c2
c3

 | c1 + c2 + c3 = 0 } = {c2

−1

1

0

+ c3

−1

0

1

 | c2, c3 ∈ R }

(read that aloud as “C perp”). So we are led to this basis for R3.

〈

11
1

 ,
−1

1

0

 ,
−1

0

1

〉
We can represent votes with respect to this basis, and thereby decompose them
into a cyclic part and an acyclic part. (Note for readers who have covered the
optional section in this chapter: that is, the space is the direct sum of C
and C⊥.)

For example, consider the D > R > T voter discussed above. We represent it
with respect to the basis

c1 − c2 − c3 =−1

c1 + c2 = 1

c1 + c3 = 1

−ρ1+ρ2−→
−ρ1+ρ3

(−1/2)ρ2+ρ3−→
c1 − c2 − c3 =−1

2c2 + c3 = 2

(3/2)c3 = 1

using the coordinates c1 = 1/3, c2 = 2/3, and c3 = 2/3. Then−1

1

1

 =
1

3
·

11
1

+
2

3
·

−1

1

0

+
2

3
·

−1

0

1

 =

1/31/3
1/3

+

−4/3

2/3

2/3


gives the desired decomposition into a cyclic part and an acyclic part.

D

T R

−1

1

1

=

D

T R

1/3

1/3

1/3

+

D

T R

−4/3

2/3

2/3
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Thus we can see that this D > R > T voter’s rational preference list does have a
cyclic part.

The T > R > D voter is opposite to the one just considered in that the ‘>’
symbols are reversed. This voter’s decomposition

D

T R

1

−1

−1

=

D

T R

−1/3

−1/3

−1/3

+

D

T R

4/3

−2/3

−2/3

shows that these opposite preferences have decompositions that are opposite.
We say that the first voter has positive spin since the cycle part is with the
direction that we have chosen for the arrows, while the second voter’s spin is
negative.

The fact that these opposite voters cancel each other is reflected in the fact
that their vote vectors add to zero. This suggests an alternate way to tally an
election. We could first cancel as many opposite preference lists as possible, and
then determine the outcome by adding the remaining lists.

The table below contains the three pairs of opposite preference lists. For
instance, the top line contains the voters discussed above.

positive spin negative spin

Democrat > Republican > Third
D

T R

−1

1

1

=

D

T R

1/3

1/3

1/3

+

D

T R

−4/3

2/3

2/3

Third > Republican > Democrat
D

T R

1

−1

−1

=

D

T R

−1/3

−1/3

−1/3

+

D

T R

4/3

−2/3

−2/3

Republican > Third > Democrat
D

T R

1

1

−1

=

D

T R

1/3

1/3

1/3

+

D

T R

2/3

2/3

−4/3

Democrat > Third > Republican
D

T R

−1

−1

1

=

D

T R

−1/3

−1/3

−1/3

+

D

T R

−2/3

−2/3

4/3

Third > Democrat > Republican
D

T R

1

−1

1

=

D

T R

1/3

1/3

1/3

+

D

T R

2/3

−4/3

2/3

Republican > Democrat > Third
D

T R

−1

1

−1

=

D

T R

−1/3

−1/3

−1/3

+

D

T R

−2/3

4/3

−2/3

If we conduct the election as just described then after the cancellation of as many
opposite pairs of voters as possible there will remain three sets of preference
lists: one set from the first row, one from the second row, and one from the third
row. We will finish by proving that a voting paradox can happen only if the
spins of these three sets are in the same direction. That is, for a voting paradox
to occur the three remaining sets must all come from the left of the table or all
come from the right (see Exercise 3). This shows that there is some connection
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between the majority cycle and the decomposition that we are using—a voting
paradox can happen only when the tendencies toward cyclic preference reinforce
each other.

For the proof, assume that we have canceled opposite preference orders and
we are left with one set of preference lists from each of the three rows. Consider
the sum of these three (here, the numbers a, b, and c could be positive, negative,
or zero).

D

T R

−a

a

a

+

D

T R

b

b

−b

+

D

T R

c

−c

c

=

D

T R

−a+b+c

a+b−c

a−b+c

A voting paradox occurs when the three numbers on the right, a − b + c and
a + b − c and −a + b + c, are all nonnegative or all nonpositive. On the left,
at least two of the three numbers a and b and c are both nonnegative or both
nonpositive. We can assume that they are a and b. That makes four cases: the
cycle is nonnegative and a and b are nonnegative, the cycle is nonpositive and
a and b are nonpositive, etc. We will do only the first case, since the second is
similar and the other two are also easy.

So assume that the cycle is nonnegative and that a and b are nonnegative.
The conditions 0 6 a− b+ c and 0 6 −a+ b+ c add to give that 0 6 2c, which
implies that c is also nonnegative, as desired. That ends the proof.

This result says only that having all three spin in the same direction is a
necessary condition for a majority cycle. It is not sufficient; see Exercise 4.

Voting theory and associated topics are the subject of current research. There
are many intriguing results, notably the one produced by K Arrow [Arrow] who
won the Nobel Prize in part for this work, showing that no voting system is
entirely fair (for a reasonable definition of “fair”). Some good introductory arti-
cles are [Gardner, 1970], [Gardner, 1974], [Gardner, 1980], and [Neimi & Riker].
[Taylor] is a readable recent book. The long list of cases from recent American po-
litical history in [Poundstone] shows these paradoxes are routinely manipulated
in practice.

This Topic is largely drawn from [Zwicker]. (Author’s Note: I would like
to thank Professor Zwicker for his kind and illuminating discussions.)

Exercises

1 Here is a reasonable way in which a voter could have a cyclic preference. Suppose
that this voter ranks each candidate on each of three criteria.
(a) Draw up a table with the rows labeled ‘Democrat’, ‘Republican’, and ‘Third’,
and the columns labeled ‘character’, ‘experience’, and ‘policies’. Inside each
column, rank some candidate as most preferred, rank another as in the middle,
and rank the remaining one as least preferred.
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(b) In this ranking, is the Democrat preferred to the Republican in (at least) two
out of three criteria, or vice versa? Is the Republican preferred to the Third?
(c) Does the table that was just constructed have a cyclic preference order? If
not, make one that does.

So it is possible for a voter to have a cyclic preference among candidates. The
paradox described above, however, is that even if each voter has a straight-line
preference list, a cyclic preference can still arise for the entire group.

2 Compute the values in the table of decompositions.
3 Do the cancellations of opposite preference orders for the Political Science class’s
mock election. Are all the remaining preferences from the left three rows of the
table or from the right?

4 The necessary condition that is proved above—a voting paradox can happen only
if all three preference lists remaining after cancellation have the same spin—is not
also sufficient.
(a) Continuing the positive cycle case considered in the proof, use the two in-
equalities 0 6 a− b+ c and 0 6 −a+ b+ c to show that |a− b| 6 c.
(b) Also show that c 6 a+ b, and hence that |a− b| 6 c 6 a+ b.
(c) Give an example of a vote where there is a majority cycle, and addition of
one more voter with the same spin causes the cycle to go away.
(d) Can the opposite happen; can addition of one voter with a “wrong” spin cause
a cycle to appear?
(e) Give a condition that is both necessary and sufficient to get a majority cycle.

5 A one-voter election cannot have a majority cycle because of the requirement that
we’ve imposed that the voter’s list must be rational.
(a) Show that a two-voter election may have a majority cycle. (We consider the
group preference a majority cycle if all three group totals are nonnegative or if
all three are nonpositive—that is, we allow some zero’s in the group preference.)
(b) Show that for any number of voters greater than one, there is an election
involving that many voters that results in a majority cycle.

6 Let U be a subspace of R3. Prove that the set U⊥ = {~v | ~v • ~u = 0 for all ~u ∈ U }

of vectors that are perpendicular to each vector in U is also subspace of R3. Does
this hold if U is not a subspace?
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Dimensional Analysis

“You can’t add apples and oranges,” the old saying goes. It reflects our experience
that in applications the quantities have units and keeping track of those units
can help. Everyone has done calculations such as this one that use the units as
a check.

60
sec
min

· 60 min
hr
· 24 hr

day
· 365 day

year
= 31 536 000

sec
year

We can take the idea of including the units beyond bookkeeping. We can use
units to draw conclusions about what relationships are possible among the
physical quantities.

To start, consider the falling body equation distance = 16 · (time)2. If the
distance is in feet and the time is in seconds then this is a true statement.
However it is not correct in other unit systems, such as meters and seconds,
because 16 isn’t the right constant in those systems. We can fix that by attaching
units to the 16, making it a dimensional constant .

dist = 16
ft

sec2
· (time)2

Now the equation holds also in the meter-second system because when we align
the units (a foot is approximately 0.30 meters),

distance in meters = 16
0.30m
sec2

· (time in sec)2 = 4.8
m
sec2

· (time in sec)2

the constant gets adjusted. So in order to have equations that are correct across
unit systems, we restrict our attention to those that use dimensional constants.
Such an equation is complete.

Moving away from a particular unit system allows us to just measure quan-
tities in combinations of some units of length L, mass M, and time T . These
three are our physical dimensions . For instance, we could measure velocity in
feet/second or fathoms/hour but at all events it involves a unit of length divided
by a unit of time so the dimensional formula of velocity is L/T . Similarly,
density’s dimensional formula is M/L3.
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To write the dimensional formula we shall use negative exponents instead of
fractions and we shall include the dimensions with a zero exponent. Thus we
will write the dimensional formula of velocity as L1M0T−1 and that of density
as L−3M1T0.

With that, “you can’t add apples and oranges” becomes the advice to check
that all of an equation’s terms have the same dimensional formula. An example
is this version of the falling body equation d−gt2 = 0. The dimensional formula
of the d term is L1M0T0. For the other term, the dimensional formula of g
is L1M0T−2 (g is given above as 16 ft/sec2) and the dimensional formula of t
is L0M0T1 so that of the entire gt2 term is L1M0T−2(L0M0T1)2 = L1M0T0.
Thus the two terms have the same dimensional formula. An equation with this
property is dimensionally homogeneous.

Quantities with dimensional formula L0M0T0 are dimensionless. For ex-
ample, we measure an angle by taking the ratio of the subtended arc to the
radius

r

arc

which is the ratio of a length to a length (L1M0T0)(L1M0T0)−1 and thus angles
have the dimensional formula L0M0T0.

The classic example of using the units for more than bookkeeping, using
them to draw conclusions, considers the formula for the period of a pendulum.

p = –some expression involving the length of the string, etc.–

The period is in units of time L0M0T1. So the quantities on the other side of
the equation must have dimensional formulas that combine in such a way that
their L’s and M’s cancel and only a single T remains. The table on page 158 has
the quantities that an experienced investigator would consider possibly relevant
to the period of a pendulum. The only dimensional formulas involving L are for
the length of the string and the acceleration due to gravity. For the L’s of these
two to cancel when they appear in the equation they must be in ratio, e.g., as
(`/g)2, or as cos(`/g), or as (`/g)−1. Therefore the period is a function of `/g.

This is a remarkable result: with a pencil and paper analysis, before we ever
took out the pendulum and made measurements, we have determined something
about what makes up its period.

To do dimensional analysis systematically, we need two facts (arguments
for these are in [Bridgman], Chapter II and IV). The first is that each equation
relating physical quantities that we shall see involves a sum of terms, where each
term has the form

mp11 m
p2
2 · · ·m

pk
k
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for numbers m1, . . . , mk that measure the quantities.
For the second fact, observe that an easy way to construct a dimensionally

homogeneous expression is by taking a product of dimensionless quantities
or by adding such dimensionless terms. Buckingham’s Theorem states that
any complete relationship among quantities with dimensional formulas can be
algebraically manipulated into a form where there is some function f such that

f(Π1, . . . , Πn) = 0

for a complete set {Π1, . . . , Πn } of dimensionless products. (The first example
below describes what makes a set of dimensionless products ‘complete’.) We
usually want to express one of the quantities, m1 for instance, in terms of the
others. For that we will assume that the above equality can be rewritten

m1 = m
−p2
2 · · ·m−pk

k · f̂(Π2, . . . , Πn)

where Π1 = m1m
p2
2 · · ·m

pk
k is dimensionless and the products Π2, . . . , Πn

don’t involve m1 (as with f, here f̂ is an arbitrary function, this time of n− 1

arguments). Thus, to do dimensional analysis we should find which dimensionless
products are possible.

For example, again consider the formula for a pendulum’s period.

quantity
dimensional
formula

period p L0M0T1

length of string ` L1M0T0

mass of bob m L0M1T0

acceleration due to gravity g L1M0T−2

arc of swing θ L0M0T0

By the first fact cited above, we expect the formula to have (possibly sums of
terms of) the form pp1`p2mp3gp4θp5 . To use the second fact, to find which
combinations of the powers p1, . . . , p5 yield dimensionless products, consider
this equation.

(L0M0T1)p1(L1M0T0)p2(L0M1T0)p3(L1M0T−2)p4(L0M0T0)p5 = L0M0T0

It gives three conditions on the powers.

p2 + p4 = 0

p3 = 0

p1 − 2p4 = 0
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Note that p3 = 0 so the mass of the bob does not affect the period. Gaussian
reduction and parametrization of that system gives this

{


p1
p2
p3
p4
p5

 =


1

−1/2

0

1/2

0

p1 +

0

0

0

0

1

p5 | p1, p5 ∈ R }

(we’ve taken p1 as one of the parameters in order to express the period in terms
of the other quantities).

The set of dimensionless products contains all terms pp1`p2mp3ap4θp5

subject to the conditions above. This set forms a vector space under the ‘+’
operation of multiplying two such products and the ‘·’ operation of raising such
a product to the power of the scalar (see Exercise 5). The term ‘complete set of
dimensionless products’ in Buckingham’s Theorem means a basis for this vector
space.

We can get a basis by first taking p1 = 1, p5 = 0, and then taking p1 = 0,
p5 = 1. The associated dimensionless products are Π1 = p`−1/2g1/2 and Π2 = θ.
Because the set {Π1, Π2 } is complete, Buckingham’s Theorem says that

p = `1/2g−1/2 · f̂(θ) =
√
`/g · f̂(θ)

where f̂ is a function that we cannot determine from this analysis (a first year
physics text will show by other means that for small angles it is approximately
the constant function f̂(θ) = 2π).

Thus, analysis of the relationships that are possible between the quantities
with the given dimensional formulas has given us a fair amount of information: a
pendulum’s period does not depend on the mass of the bob, and it rises with
the square root of the length of the string.

For the next example we try to determine the period of revolution of two
bodies in space orbiting each other under mutual gravitational attraction. An
experienced investigator could expect that these are the relevant quantities.

quantity
dimensional
formula

period p L0M0T1

mean separation r L1M0T0

first mass m1 L0M1T0

second mass m2 L0M1T0

gravitational constant G L3M−1T−2

To get the complete set of dimensionless products we consider the equation

(L0M0T1)p1(L1M0T0)p2(L0M1T0)p3(L0M1T0)p4(L3M−1T−2)p5 = L0M0T0
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which results in a system

p2 + 3p5 = 0

p3 + p4 − p5 = 0

p1 − 2p5 = 0

with this solution.

{


1

−3/2

1/2

0

1/2

p1 +

0

0

−1

1

0

p4 | p1, p4 ∈ R }

As earlier, the set of dimensionless products of these quantities forms a
vector space and we want to produce a basis for that space, a ‘complete’ set of
dimensionless products. One such set, gotten from setting p1 = 1 and p4 = 0
and also setting p1 = 0 and p4 = 1 is {Π1 = pr

−3/2m
1/2
1 G1/2, Π2 = m

−1
1 m2 }.

With that, Buckingham’s Theorem says that any complete relationship among
these quantities is stateable this form.

p = r3/2m
−1/2
1 G−1/2 · f̂(m−1

1 m2) =
r3/2√
Gm1

· f̂(m2/m1)

Remark. An important application of the prior formula is when m1 is the
mass of the sun and m2 is the mass of a planet. Because m1 is very much greater
than m2, the argument to f̂ is approximately 0, and we can wonder whether
this part of the formula remains approximately constant as m2 varies. One way
to see that it does is this. The sun is so much larger than the planet that the
mutual rotation is approximately about the sun’s center. If we vary the planet’s
mass m2 by a factor of x (e.g., Venus’s mass is x = 0.815 times Earth’s mass),
then the force of attraction is multiplied by x, and x times the force acting on
x times the mass gives, since F = ma, the same acceleration, about the same
center (approximately). Hence, the orbit will be the same and so its period
will be the same, and thus the right side of the above equation also remains
unchanged (approximately). Therefore, f̂(m2/m1) is approximately constant as
m2 varies. This is Kepler’s Third Law: the square of the period of a planet is
proportional to the cube of the mean radius of its orbit about the sun.

The final example was one of the first explicit applications of dimensional
analysis. Lord Raleigh considered the speed of a wave in deep water and
suggested these as the relevant quantities.



Topic: Dimensional Analysis 161

quantity
dimensional
formula

velocity of the wave v L1M0T−1

density of the water d L−3M1T0

acceleration due to gravity g L1M0T−2

wavelength λ L1M0T0

The equation

(L1M0T−1)p1(L−3M1T0)p2(L1M0T−2)p3(L1M0T0)p4 = L0M0T0

gives this system
p1 − 3p2 + p3 + p4 = 0

p2 = 0

−p1 − 2p3 = 0

with this solution space.

{


1

0

−1/2

−1/2

p1 | p1 ∈ R }

There is one dimensionless product, Π1 = vg−1/2λ−1/2, and so v is
√
λg times

a constant; f̂ is constant since it is a function of no arguments. The quantity d
is not involved in the relationship.

The three examples above show that dimensional analysis can bring us far
toward expressing the relationship among the quantities. For further reading,
the classic reference is [Bridgman]— this brief book is delightful. Another source
is [Giordano, Wells, Wilde]. A description of dimensional analysis’s place in
modeling is in [Giordano, Jaye, Weir].

Exercises
1 [de Mestre] Consider a projectile, launched with initial velocity v0, at an angle θ.
To study its motion we may guess that these are the relevant quantities.

quantity
dimensional
formula

horizontal position x L1M0T0

vertical position y L1M0T0

initial speed v0 L1M0T−1

angle of launch θ L0M0T0

acceleration due to gravity g L1M0T−2

time t L0M0T1

(a) Show that {gt/v0, gx/v20, gy/v
2
0, θ } is a complete set of dimensionless products.

(Hint. One way to go is to find the appropriate free variables in the linear system
that arises but there is a shortcut that uses the properties of a basis.)
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(b) These two equations of motion for projectiles are familiar: x = v0 cos(θ)t and
y = v0 sin(θ)t− (g/2)t2. Manipulate each to rewrite it as a relationship among
the dimensionless products of the prior item.

2 [Einstein] conjectured that the infrared characteristic frequencies of a solid might
be determined by the same forces between atoms as determine the solid’s ordinary
elastic behavior. The relevant quantities are these.

quantity
dimensional
formula

characteristic frequency ν L0M0T−1

compressibility k L1M−1T2

number of atoms per cubic cm N L−3M0T0

mass of an atom m L0M1T0

Show that there is one dimensionless product. Conclude that, in any complete
relationship among quantities with these dimensional formulas, k is a constant
times ν−2N−1/3m−1. This conclusion played an important role in the early study
of quantum phenomena.

3 [Giordano, Wells, Wilde] The torque produced by an engine has dimensional
formula L2M1T−2. We may first guess that it depends on the engine’s rotation
rate (with dimensional formula L0M0T−1), and the volume of air displaced (with
dimensional formula L3M0T0).
(a) Try to find a complete set of dimensionless products. What goes wrong?
(b) Adjust the guess by adding the density of the air (with dimensional formula
L−3M1T0). Now find a complete set of dimensionless products.

4 [Tilley] Dominoes falling make a wave. We may conjecture that the wave speed v
depends on the spacing d between the dominoes, the height h of each domino, and
the acceleration due to gravity g.
(a) Find the dimensional formula for each of the four quantities.
(b) Show that {Π1 = h/d,Π2 = dg/v2 } is a complete set of dimensionless products.
(c) Show that if h/d is fixed then the propagation speed is proportional to the
square root of d.

5 Prove that the dimensionless products form a vector space under the ~+ operation
of multiplying two such products and the ~· operation of raising such the product
to the power of the scalar. (The vector arrows are a precaution against confusion.)
That is, prove that, for any particular homogeneous system, this set of products of
powers of m1, . . . , mk

{m
p1
1 . . .m

pk
k | p1, . . . , pk satisfy the system }

is a vector space under:

m
p1
1 . . .m

pk
k

~+m
q1
1 . . .m

qk
k = m

p1+q1
1 . . .m

pk+qk
k

and
r~·(mp11 . . .m

pk
k ) = m

rp1
1 . . .m

rpk
k

(assume that all variables represent real numbers).
6 The advice about apples and oranges is not right. Consider the familiar equations
for a circle C = 2πr and A = πr2.
(a) Check that C and A have different dimensional formulas.
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(b) Produce an equation that is not dimensionally homogeneous (i.e., it adds
apples and oranges) but is nonetheless true of any circle.
(c) The prior item asks for an equation that is complete but not dimensionally
homogeneous. Produce an equation that is dimensionally homogeneous but not
complete.

(Just because the old saying isn’t strictly right, doesn’t keep it from being a
useful strategy. Dimensional homogeneity is often used to check the plausibility
of equations used in models. For an argument that any complete equation can
easily be made dimensionally homogeneous, see [Bridgman], Chapter I, especially
page 15.)


